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Preface	to	the	Fifth	Edition

Every	scientific	investigation	begins	with	the	researcher	examining	reports	of	previous	studies	related	to
the	topic	of	interest.	Without	this	step,	researchers	cannot	expect	their	efforts	to	contribute	to	an
integrated,	comprehensive	picture	of	the	world.	They	cannot	achieve	the	progress	that	comes	from
building	on	the	efforts	of	others.	Also,	investigators	working	in	isolation	are	doomed	to	repeat	the
mistakes	made	by	their	predecessors.

Similar	to	primary	data	collection,	researchers	need	guidance	about	how	to	conduct	a	research	synthesis
—how	to	find	research	already	conducted	on	a	particular	topic,	gather	information	from	research	reports,
evaluate	the	quality	of	research,	integrate	results,	interpret	the	cumulative	findings,	and	present	a
comprehensive	and	coherent	report	of	the	synthesis’	findings.	This	book	presents	the	basic	steps	in
carrying	out	a	research	synthesis.	It	is	intended	for	use	by	social	and	behavioral	scientists	who	are
unfamiliar	with	research	synthesis	and	meta-analysis	but	who	possess	an	introductory	background	in
basic	research	methods	and	statistics.

Instead	of	a	subjective,	narrative	approach	to	research	synthesis,	this	book	presents	an	objective,
systematic	approach.	Herein,	you	will	learn	how	to	carry	out	an	integration	of	research	according	to	the
principles	of	good	science.	The	intended	result	is	a	research	synthesis	that	can	be	replicated	by	others,
can	create	consensus	among	scholars,	and	can	lead	to	constructive	debate	on	unresolved	issues.	Equally
important,	users	of	this	approach	should	complete	their	research	synthesis	feeling	knowledgeable	and
confident	that	their	future	primary	research	can	make	a	contribution	to	the	field.

The	scientific	approach	to	research	synthesis	has	rapidly	gained	acceptance.	In	the	years	between	its	first
and	fifth	editions,	the	procedures	outlined	in	this	book	have	changed	from	being	controversial	practices
to	being	accepted	ones.	Indeed,	in	many	fields	the	approach	outlined	herein	is	now	obligatory.	The	years
have	also	brought	improvements	in	synthesis	techniques.	The	technology	surrounding	literature
searching	has	changed	dramatically.	The	statistical	underpinnings	of	meta-analysis—the	quantitative
combination	of	study	results—have	been	developed	and	the	application	of	these	procedures	has	become
widely	accessible.	Many	techniques	have	been	devised	to	help	research	synthesists	present	their	results
in	a	fashion	that	will	be	meaningful	to	their	audience.	Methodologists	have	proposed	ways	to	make
syntheses	more	resistant	to	criticism.

This	fifth	edition	incorporates	these	changes.	Most	notably,	Chapter	4	on	conducting	a	literature	search
has	been	updated	to	include	many	of	the	recent	developments	wrought	by	the	expanded	use	of	the
Internet	for	scientific	communication.	Many	new	developments	have	also	occurred	in	the	techniques	for
meta-analysis;	these	are	covered	in	Chapter	6.	They	include	new	statistics	for	describing	meta-analytic
results	and	new	techniques	for	combining	complex	data	structures.	The	latter	are	touched	on	only	briefly
because	they	require	more-advanced	statistical	training,	unlike	the	other	techniques	I	cover.	Also,	the
references	have	been	updated	globally	through	the	text.

Several	institutions	and	individuals	have	been	instrumental	in	the	preparation	of	the	different	editions	of
this	book.	First,	the	United	States	Department	of	Education	provided	research	support	while	the	first	and
third	editions	of	the	manuscript	were	prepared,	and	the	W.	T.	Grant	Foundation	while	the	fifth	edition	was
prepared.	Special	thanks	go	to	numerous	former	and	current	graduate	students:	Kathryn	Anderson,	Brad
Bushman,	Vicki	Conn,	Amy	Dent,	Maureen	Findley,	Pamela	Hazelrigg,	Ken	Ottenbacher,	Erika	Patall,
Georgianne	Robinson,	Patrick	Smith,	David	Tom,	and	Julie	Yu.	Each	performed	a	research	review	in	his	or
her	area	of	interest	under	my	supervision.	Each	has	had	his	or	her	work	serve	as	an	example	in	at	least
one	edition	of	the	book,	and	four	of	their	efforts	are	used	in	the	current	edition	to	illustrate	the	different
synthesis	techniques.	Jeff	Valentine,	also	a	former	student	of	mine,	was	a	collaborator	on	the	work
regarding	the	evaluation	of	research	discussed	in	Chapter	5.	Four	reference	librarians,	Kathleen	Connors,
Jolene	Ezell,	Jeanmarie	Fraser,	and	Judy	Pallardy,	helped	with	the	chapter	on	literature	searching.	Larry
Hedges	and	Terri	Pigott	have	examined	my	exposition	of	statistical	techniques.	Three	more	graduate
students,	Ashley	Bates	Allen,	Cyndi	Kernahan,	and	Laura	Muhlenbruck,	read	and	reacted	to	chapters	in
various	editions.	Angela	Clinton,	Cathy	Luebbering,	and	Pat	Shanks	typed,	and	retyped,	and	proofread	my
manuscripts.	My	sincerest	thanks	to	these	friends	and	colleagues.

Harris	Cooper

Durham,	North	Carolina
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1	Introduction	Literature	Reviews,	Research	Syntheses,
and	Meta-Analyses

This	chapter	describes
A	justification	for	why	attention	to	research	synthesis	methods	is	important
The	goals	of	this	book
A	definition	of	the	terms	research	synthesis	and	meta-analysis
A	comparison	of	traditional	narrative	methods	of	research	synthesis	and	methods	based	on	scientific	principles
A	brief	history	of	the	development	of	the	methods	presented	in	this	book
A	seven-step	model	for	the	research	synthesis	process
An	introduction	to	four	research	syntheses	that	will	serve	as	practical	examples	in	the	chapters	that	follow

Much	like	a	jigsaw	puzzle	you	might	do	with	family	or	friends,	science	is	a	cooperative,	interdependent
enterprise—only	a	puzzle	in	science	is	huge,	and	the	puzzlers	can	span	the	globe	and	place	pieces	over
decades.	The	hours	you	spend	conducting	a	study	contribute	just	one	piece	to	a	much	larger	puzzle.	The
value	of	your	study	will	be	determined	as	much	by	what	direction	it	provides	for	future	research	(how	it
contributes	to	identifying	the	next	needed	puzzle	piece)	as	from	its	own	findings.	Although	it	is	true	that
some	studies	receive	more	attention	than	others,	this	is	typically	because	the	piece	of	the	puzzle	they
solve	(or	the	new	puzzle	they	introduce)	is	important,	not	because	they	are	puzzle	solutions	in	and	of
themselves.

The	Need	for	Attention	to	Research	Synthesis
Science,	then,	is	a	cooperative	and	cumulative	enterprise.	As	such,	trustworthy	accounts	that	describe
past	research	are	a	necessary	step	in	the	orderly	development	of	scientific	knowledge.	Untrustworthy
accounts	are	similar	to	a	puzzler	forcing	pieces	to	fit	and	putting	pieces	of	the	ocean	in	the	sky.	In	order
to	make	a	contribution	to	our	understanding	of	social	and	behavioral	phenomena,	researchers	first	need
to	know	what	is	already	known,	with	what	certainty,	and	what	remains	unexplained.	Yet,	until	four
decades	ago,	social	scientists	paid	little	attention	to	how	they	conducted	literature	reviews	that	covered
empirical	findings,	and	how	they	located,	evaluated,	summarized,	and	interpreted	past	research.	This
omission	from	our	research	methodology	became	glaringly	obvious	when	the	explosion	in	the	number	of
social	researchers	that	occurred	in	the	1960s	and	1970s	resulted	in	a	huge	increase	in	the	amount	of
social	science	research.	It	put	in	bold	relief	the	lack	of	systematic	procedures	for	conducting	literature
reviews	that	synthesized	research.	As	the	amount	of	research	grew,	so	did	the	need	for	credible	ways	to
integrate	research	findings,	ways	to	ensure	that	fish	did	not	fly	and	birds	did	not	swim	in	our	scientific
puzzles.

Access	to	social	science	scholarship	also	has	changed	dramatically.	In	particular,	the	ability	to	find	other
people’s	research	has	been	made	easier	by	online	reference	databases	and	the	Internet.	Developing	a	list
of	research	articles	on	a	topic	that	interests	you	used	to	involve	the	lengthy	and	tedious	scrutiny	of
printed	compendia.	Today,	such	lists	can	be	generated,	scrutinized,	and	revised	with	a	few	keystrokes.
The	number	of	reference	databases	you	can	search	is	hardly	constrained	by	the	time	you	have	to	devote
to	conducting	your	search.	A	half	century	ago,	if	you	found	an	abstract	of	an	article	that	interested	you	it
could	take	weeks	to	communicate	with	its	authors.	Now,	with	electronic	mail	and	file	transfer,
conversations	and	documents	can	be	shared	in	seconds	with	the	press	of	a	button.

The	need	for	trustworthy	accounts	of	past	research	has	also	been	heightened	by	growing	specialization
within	the	social	sciences.	Today,	time	constraints	make	it	impossible	for	most	social	scientists	to	keep	up
with	primary	research	except	within	a	few	topic	areas	of	special	interest	to	them.	In	1971,	Garvey	and
Griffith	(1971)	wrote,

The	individual	scientist	is	being	overloaded	with	scientific	information.	Perhaps	the	alarm	over	an
“information	crisis”	arose	because	sometime	in	the	last	information	doubling	period,	the	individual
psychologist	became	overburdened	and	could	no	longer	keep	up	with	and	assimilate	all	the
information	being	produced	that	was	related	to	his	primary	specialty.	(p.	350,	emphasis	in	original)

What	was	true	in	1971	is	far	truer	today.

And	finally,	the	call	for	use	of	evidence-based	decision	making	has	placed	a	new	emphasis	on	the
importance	of	understanding	how	a	study	was	conducted,	what	it	found,	and	what	the	cumulative
evidence	suggests	is	best	practice	(American	Psychological	Association’s	Presidential	Task	Force	on
Evidence-Based	Practice,	2006).	For	example,	in	medicine	there	exists	an	international	consortium	of
researchers,	the	Cochrane	Collaboration	(2015),	producing	hundreds	of	reports	examining	the	cumulative



evidence	on	everything	from	public	health	initiatives	to	surgical	procedures.	In	public	policy,	a	similar
consortium	exists	(Campbell	Collaboration,	2015),	as	do	organizations	meant	to	promote	government
policy	making	based	on	rigorous	evidence	of	program	effectiveness	(e.g.,	Coalition	for	Evidence-Based
Policy,	2015).	Each	of	these	efforts,	and	many	others,	relies	on	trustworthy	research	syntheses	to	assist
practitioners	and	policy	makers	in	making	critical	decisions	meant	to	improve	human	welfare.

Goals	and	Premises	of	the	Book
This	book	is	meant	to	serve	as	an	introductory	text	on	how	to	conduct	a	literature	review	of	research	and
a	meta-analysis	in	the	social	and	behavioral	sciences.	The	approach	I	will	take	applies	the	basic	tenets	of
sound	data	gathering,	analysis,	and	interpretation	to	the	task	of	producing	a	comprehensive	integration
of	past	research	on	a	topic.	I	will	assume	that	you	agree	with	me	that	the	rules	of	rigorous,	systematic
social	science	inquiry	are	the	same	whether	the	inquirer	is	conducting	a	new	data	collection	(a	primary
study)	or	a	research	synthesis.	However,	the	two	types	of	inquiry	require	techniques	specific	to	their
purpose.

There	is	one	critical	premise	underlying	the	methods	described	in	this	text.	It	is	that	integrating	separate
research	projects	into	a	coherent	picture	involves	inferences	as	central	to	the	validity	of	knowledge	as	the
inferences	involved	in	drawing	conclusions	from	primary	data	analysis.	When	you	read	a	research
synthesis,	you	cannot	take	for	granted	the	validity	of	its	conclusions,	and	that	the	author	did	a	good	job
because	you	trust	him	or	her;	its	validity	must	be	evaluated	against	scientific	standards.	Social	scientists
performing	a	research	synthesis	make	numerous	decisions	that	affect	the	outcomes	of	their	work.	Each
choice	may	enhance	or	undermine	the	trustworthiness	of	those	outcomes.	Therefore,	if	social	science
knowledge	contained	in	research	syntheses	is	to	be	worth	believing,	research	synthesists	must	meet	the
same	rigorous	methodological	standards	that	are	required	of	primary	researchers.

Judging	the	validity	of	primary	research	in	the	social	sciences	gained	its	modern	foothold	with	the
publication	of	Campbell	and	Stanley’s	(1963)	monograph	Experimental	and	Quasi-Experimental	Designs
for	Research.	A	lineage	of	subsequent	work	refined	this	approach	(e.g.,	Bracht	&	Glass,	1968;	Campbell,
1969;	Cook	&	Campbell,	1979;	Shadish,	Cook,	&	Campbell,	2002).	However,	it	was	not	until	15	years
after	Campbell	and	Stanley’s	pioneering	work	that	social	scientists	realized	they	also	needed	a	way	to
think	about	research	syntheses	that	provided	guidelines	for	evaluating	the	validity	of	syntheses	that
accumulated	primary	research	outcomes.

This	book	describes	(a)	an	organizing	scheme	for	judging	the	validity	of	research	syntheses,	and	(b)	the
techniques	you	can	use	to	maximize	the	validity	of	conclusions	drawn	in	syntheses	you	might	conduct
yourself.

Definitions	of	Literature	Reviews
There	are	many	terms	that	are	used	interchangeably	to	label	the	activities	described	in	this	book.	These
terms	include	literature	review,	research	review,	systematic	review,	research	synthesis,	and	meta-
analysis.	In	fact,	some	of	these	terms	should	be	viewed	as	interchangeable,	whereas	some	have	broader
or	narrower	meanings	than	others.

The	term	that	encompasses	all	the	rest	is	literature	review.	You	would	provide	a	brief	literature	review	in
the	introduction	to	a	report	of	new	data.	The	scope	of	a	literature	review	that	introduces	a	new	primary
study	typically	is	quite	narrow:	it	will	be	restricted	to	those	theoretical	works	and	empirical	studies
pertinent	to	the	specific	issue	addressed	by	the	new	study.	The	kind	of	literature	review	we	are	interested
in	here	appears	as	a	detailed	independent	work	of	scholarship.	A	literature	review	can	serve	many
different	purposes.	It	can	have	numerous	different	focuses	and	goals,	take	different	perspectives	in
looking	at	the	literature,	cover	more	or	less	of	the	literature,	and	be	written	with	different	organizing
principles	for	different	audiences.

Based	on	interviews	and	a	survey	of	authors,	I	presented	a	scheme	for	categorizing	literature	reviews
(Cooper,	1988).	This	taxonomy	is	presented	in	Table	1.1.	Most	of	the	categories	are	easily	understood.	For
instance,	literature	reviews	can	focus	on	the	outcomes	of	research,	research	methods,	theories,	and/or
applications	of	research	to	real-world	problems.	Literature	reviews	can	have	one	or	more	goals:	(a)	to
integrate	(compare	and	contrast)	what	others	have	done	and	said,	(b)	to	criticize	previous	scholarly
works,	(c)	to	build	bridges	between	related	topic	areas,	and/or	(d)	to	identify	the	central	issues	in	a	field.



SOURCE:	Cooper,	H.	(1988).	Organizing	knowledge	syntheses:	A	taxonomy	of	literature	reviews.	Knowledge	in	Society,	1,	p.
109.	©	1988	by	Transaction	Publishers.	With	kind	permission	from	Springer	Science	and	Business	Media

Petticrew	and	Roberts	(2006)	might	add	to	my	taxonomy	a	classification	related	to	the	time	available	to
do	the	review.	They	use	the	term	rapid	reviews	to	describe	reviews	with	a	limited	time	for	completion.
Also,	they	use	the	term	scoping	review	for	a	review	meant	to	assess	the	types	of	relevant	work	currently
in	the	literature	and	where	they	can	be	found.	This	type	of	review	has	the	goal	of	helping	the	reviewers
refine	their	research	question	(e.g.,	in	terms	of	its	conceptual	breadth	or	years	of	coverage)	and	gauge
the	feasibility	(in	terms	of	time	and	resources)	of	conducting	a	full	review.	A	scoping	review	is	akin	to	a
pilot	study	in	primary	research.

Literature	reviews	that	combine	two	specific	focuses	and	goals	appear	most	frequently	in	the	scientific
literature.	This	type	of	literature	review,	and	the	focus	of	this	book,	has	been	alternately	called	a	research
synthesis,	a	research	review,	or	a	systematic	review.	Research	syntheses	focus	on	empirical	research
findings	and	have	the	goal	of	integrating	past	research	by	drawing	overall	conclusions	(generalizations)
from	many	separate	investigations	that	address	identical	or	related	hypotheses.	The	research	synthesist’s
goal	is	to	present	the	state	of	knowledge	concerning	the	relation(s)	of	interest	and	to	highlight	important
issues	that	research	has	left	unresolved.	From	the	reader’s	viewpoint,	a	research	synthesis	is	intended	to
“replace	those	earlier	papers	that	have	been	lost	from	sight	behind	the	research	front”	(Price,	1965,	p.
513)	and	to	direct	future	research	so	that	it	yields	a	maximum	amount	of	new	information.

A	second	kind	of	literature	review	that	you	will	frequently	encounter	is	a	theoretical	review.	Here,	the
reviewer	hopes	to	present	the	theories	offered	to	explain	a	particular	phenomenon	and	to	compare	them.
The	comparisons	will	examine	the	theories’	breadth,	internal	consistency,	and	the	nature	of	their



predictions.	Typically,	theoretical	reviews	contain	descriptions	of	critical	experiments	already	conducted
and	assessments	of	which	theory	is	(a)	most	consistent	with	well-established	research	findings	and	(b)
broadest	in	its	ability	to	encompass	the	phenomena	of	interest.	Sometimes	theoretical	reviews	will	also
contain	reformulations	and	integrations	of	notions	drawn	from	different	theories.

Often,	a	comprehensive	literature	review	will	address	several	sets	of	issues.	Research	syntheses	are	most
common,	however,	and	theoretical	reviews	will	typically	contain	some	synthesis	of	research.	It	is	also	not
unusual	for	research	syntheses	to	address	multiple,	related	topics.	For	example,	a	synthesis	might
examine	the	relation	between	several	different	independent	or	predictor	variables	and	a	single	dependent
or	criterion	variable.	For	example,	Scott	and	colleagues	(2015)	meta-analyzed	the	research	on	cognitive
deficits	that	are	associated	with	posttraumatic	stress	disorder.	Nine	cognitive	domains	were	included	in
the	meta-analysis:	(1)	attention/working	memory,	(2)	executive	functions,	(3)	verbal	learning,	(4)	verbal
memory,	(5)	visual	learning,	(6)	visual	memory,	(7)	language,	(8)	speed	of	processing,	and	(9)	visuospatial
abilities.	The	meta-analysis	revealed	that	all	of	the	cognitive	deficits	appeared	more	often	in	people
classified	as	currently	suffering	from	posttraumatic	stress	disorder	but	the	strongest	relationship	(verbal
learning)	was	about	twice	as	large	as	the	weakest	relationship	(visual	memory).

As	another	example,	a	research	synthesis	might	try	to	summarize	research	related	to	a	series	of
temporally	linked	hypotheses.	Harris	and	Rosenthal	(1985)	studied	the	mediation	of	interpersonal
expectancy	effects	by	first	synthesizing	research	on	how	expectancies	affect	the	behavior	of	the	person
who	holds	the	expectation	and	then	synthesizing	research	on	how	these	behaviors	influenced	the
behavior	of	the	target.

This	book	is	about	research	synthesis.	Not	only	is	this	the	most	frequent	kind	of	literature	review	in	the
social	sciences,	but	it	also	contains	many,	if	not	most,	of	the	decision	points	present	in	other	types	of
reviews—and	some	unique	ones	as	well.	I	have	chosen	to	favor	the	label	research	synthesis	over	other
labels	for	this	type	of	literature	review	because	the	labels	research	review	and	systematic	review
occasionally	cause	confusion.	They	can	also	be	applied	to	the	process	of	peer	review—that	is,	the	critical
evaluation	of	a	manuscript	that	has	been	submitted	for	publication	in	a	scientific	journal.	Thus,	a	journal
editor	may	ask	a	scholar	to	provide	a	research	review	or	a	systematic	review	of	a	manuscript.	The	term
research	synthesis	avoids	this	confusion	and	puts	the	synthesis	activity	front	and	center.	Also,	this	label	is
used	by	The	Handbook	of	Research	Synthesis	and	Meta-Analysis	(Cooper,	Hedges,	&	Valentine,	2009),	a
text	that	describes	approaches	consistent	with	those	presented	here	but	in	a	more	advanced	manner.

The	term	meta-analysis	is	often	used	as	a	synonym	for	research	synthesis,	research	review,	or	systematic
review.	In	this	book,	meta-analysis	will	be	employed	solely	to	denote	the	quantitative	procedures	used	to
statistically	combine	the	results	of	studies	(these	procedures	are	described	in	Chapter	5).

Why	We	Need	Research	Syntheses	Based	on	Scientific
Principles
Before	the	methods	described	in	this	book	were	available,	most	social	scientists	developed	summaries	of
empirical	research	using	a	process	in	which	multiple	studies	investigating	the	same	topics	were	collected
and	described	in	a	narrative	fashion.	These	synthesists	would	describe	one	study	after	another,	often
arranged	temporally,	and	then	would	draw	a	conclusion	about	the	research	findings	based	on	their
interpretation	of	what	was	found	in	the	literature	as	a	whole.

Research	syntheses	conducted	in	the	traditional	narrative	manner	have	been	much	criticized.	Opponents
of	the	traditional	research	synthesis	have	suggested	that	this	method—and	its	resulting	conclusions—is
imprecise	in	both	process	and	outcome.	In	particular,	traditional	narrative	research	syntheses	lack
explicit	standards	of	proof.	Readers	and	users	of	these	syntheses	do	not	know	what	standard	of	evidence
was	used	to	decide	whether	a	set	of	studies	supported	its	conclusion	(Johnson	&	Eagly,	2000).	The
combining	rules	used	by	traditional	synthesists	are	rarely	known	to	anyone	but	the	synthesists
themselves,	if	even	they	are	consciously	aware	of	what	is	guiding	their	inferences.

Four	other	disadvantages	to	traditional	research	syntheses,	at	least	as	they	were	carried	out	in	the	past,
have	often	been	leveled	against	this	approach.	First,	traditional	research	syntheses	rarely	involve
systematic	procedures	to	ensure	that	all	the	relevant	research	was	located	and	included	in	the	synthesis.
Traditional	literature	searches	often	stopped	after	the	synthesists	had	gathered	the	studies	they	were
already	aware	of	or	that	they	could	locate	through	a	search	of	a	single	reference	database.	Second,	there
was	no	way	to	check	the	accuracy	with	the	information	gathered	from	each	study.	Traditional	research
syntheses	rarely,	if	ever,	contained	measures	that	assessed	the	reliability	of	the	descriptions	of	the
included	research.	Third,	traditional	narrative	syntheses	were	prone	to	use	post	hoc	criteria	to	decide
whether	individual	studies	met	an	acceptable	threshold	for	methodological	quality.	This	lack	of	explicit
use	of	a	priori	quality	standards	led	Glass	(1976)	to	write,

A	common	method	of	integrating	several	studies	with	inconsistent	findings	is	to	carp	on	the	design	or
analysis	deficiencies	of	all	but	a	few	studies—those	remaining	frequently	being	one’s	own	work	or



that	of	one’s	students	or	friends—and	then	advance	the	one	or	two	“acceptable”	studies	as	the	truth
of	the	matter.	(p.	4)

Finally,	traditional	narrative	syntheses,	by	their	very	nature,	failed	to	result	in	statements	regarding	the
overall	magnitude	of	the	relationship	under	investigation.	They	cannot	answer	the	questions,	“What	was
the	size	of	the	relationship	between	the	variables	of	interest?”	or	“How	much	change	was	caused	by	the
intervention?”	or	“Was	this	relationship	or	the	effect	of	this	intervention	larger	or	smaller	than	that
between	other	variables	of	interest	or	other	interventions?”

Concern	about	the	potential	for	error	and	imprecision	in	traditional	narrative	syntheses	encouraged
social	science	methodologists	to	develop	the	more	rigorous	and	transparent	alternatives	described	in	this
book.	Today,	state-of-the-art	research	syntheses	use	a	collection	of	methodological	and	statistical
techniques	meant	to	reduce	bias	in	accounts	of	the	research,	and	to	standardize	and	make	explicit	the
procedures	used	to	collect,	catalog,	and	combine	primary	research.	For	example,	today	literature-
searching	strategies	are	designed	to	minimize	differences	between	the	results	of	retrieved	studies	and
studies	that	were	conducted	but	could	not	be	uncovered	by	the	literature	search.	Before	the	literature
search	begins,	the	criteria	for	deciding	whether	a	study	was	conducted	well	enough	to	be	included	in	the
synthesis	are	explicitly	stated.	Then,	these	criteria	are	consistently	applied	to	all	studies,	regardless	of
whether	the	results	support	or	refute	the	hypotheses	under	investigation.	Data	from	the	research	report
are	recorded	using	prespecified	coding	categories	by	coders	trained	to	maximize	interjudge	agreement.
Meta-analytic	statistical	methods	are	applied	to	summarize	the	data	and	provide	a	quantitative
description	of	the	cumulative	research	findings.	Thus,	research	synthesis	and	the	statistical	integration	of
study	results	are	conducted	with	the	same	rigorous	procedures	and	are	reported	with	the	same
transparency	as	is	data	analysis	in	primary	scientific	studies.

One	example	of	how	using	state-of-the-art	research	synthesis	methods	can	change	cumulative	findings
was	provided	by	a	study	conducted	by	Robert	Rosenthal	and	me	(Cooper	&	Rosenthal,	1980).	In	this
study,	graduate	students	and	university	faculty	members	were	asked	to	evaluate	a	research	literature	on
a	simple	research	question:	Are	there	sex	differences	in	task	persistence?	All	the	participants	in	our	study
synthesized	the	same	set	of	persistence	studies	but	half	of	them	used	quantitative	procedures	and	half
used	whatever	criteria	appealed	to	them—in	other	words,	their	own	unstated	inference	test.	We	found
statistical	synthesists	thought	there	was	more	support	for	the	sex-difference	hypothesis	and	a	larger
relationship	between	variables	than	did	the	other	synthesists.	Our	finding	revealed	that	synthesists	we
asked	to	use	statistical	techniques	also	tended	to	view	future	replications	as	less	necessary	than	did	other
synthesists,	although	the	difference	between	statistical	and	other	synthesists	did	not	reach	statistical
significance.

Principal	Outcomes	of	a	Research	Synthesis
In	addition	to	using	a	rigorous	and	transparent	approach	to	cumulating	the	research,	a	state-of-the-art
research	synthesis	is	expected	to	provide	information	on	several	types	of	findings	relating	to	the
cumulative	results	of	the	research	it	covers.	First,	if	a	theoretical	proposition	is	under	scrutiny,	readers	of
research	syntheses	will	expect	you	to	give	them	an	overall	estimate	of	the	support	for	the	hypothesis,
both	in	terms	of	whether	the	null	hypothesis	can	be	rejected	and	the	hypothesis’	explanatory	power—that
is,	the	size	of	the	relationship.	Or	if	an	intervention	or	public	policy	is	under	scrutiny,	readers	will	expect
you	to	estimate	the	effectiveness	of	the	intervention	or	impact	of	the	policy	on	the	people	it	is	meant	to
influence.

But	you	cannot	stop	there.	Your	audience	also	will	expect	to	see	tests	of	whether	the	relationship	or
estimate	of	effectiveness	is	influenced	by	variations	in	context.	These	may	be	suggested	by	characteristics
of	the	theoretical	hypothesis	or	intervention	itself;	how,	when,	and	where	the	study	was	carried	out;	and
who	the	participants	were.	Readers	expect	to	be	told	whether	the	results	of	studies	in	your	synthesis
varied	systematically	according	to	characteristics	of	the	manipulations	or	interventions,	the	settings	and
times	at	which	the	studies	were	conducted,	differences	between	participants,	characteristics	of	the
measuring	instruments,	and	so	on.

A	Brief	History	of	Research	Synthesis	and	Meta-Analysis
Above,	I	pointed	out	that	the	increase	in	social	science	research	coupled	with	the	new	information
technologies	and	the	desire	for	trustworthy	research	syntheses	in	policy	domains	gave	impetus	to
development	of	the	methods	described	in	this	book.	Here,	I	provide	a	brief	history	of	people	and	events
that	have	contributed	to	these	techniques	(see	Cooper,	Patall,	&	Lindsay,	2009,	for	a	similar	history).

Karl	Pearson	(1904)	is	credited	with	publishing	what	is	believed	to	be	the	first	meta-analysis	(Shadish	&
Haddock,	2009).	Pearson	gathered	data	from	11	studies	testing	the	effectiveness	of	a	vaccine	against
typhoid	and	calculated	for	each	a	statistic	he	had	recently	developed,	called	the	correlation	coefficient.
Based	on	the	average	correlations,	Pearson	concluded	that	other	vaccines	were	more	effective	than	the



new	one.

In	1932	Ronald	Fisher,	in	his	classic	text	Statistical	Methods	for	Research	Workers,	wrote,	“It	sometimes
happens	that	although	few	or	[no	statistical	tests]	can	be	claimed	individually	as	significant,	yet	the
aggregate	gives	an	impression	that	the	probabilities	are	lower	than	would	have	been	obtained	by	chance”
(p.	99).	Fisher	was	noting	that	statistical	tests	often	fail	to	reject	the	null	hypothesis	because	they	lack
statistical	power.	However,	if	the	underpowered	tests	were	combined,	their	cumulative	power	would	be
greater.	For	example,	if	you	conduct	a	null	hypothesis	significance	test	and	get	a	probability	level	of	p	=
.10,	the	test	is	not	statistically	significant.	But,	what	are	the	chances	of	getting	a	second	independent	test
revealing	p	=	.10	if	the	null	hypothesis	is	true?	Fisher	presented	a	technique	for	combining	the	p-values
that	came	from	statistically	independent	tests	of	the	same	hypothesis.

Fisher’s	work	would	be	followed	by	more	than	a	dozen	methodological	papers	published	prior	to	1960
(see	Olkin,	1990),	but	the	techniques	were	rarely	put	to	use	in	research	syntheses.	Gene	Glass	(1976)
introduced	the	term	meta-analysis	to	mean	the	statistical	analysis	of	results	from	individual	studies	“for
purposes	of	integrating	the	findings”	(p.	3).	Glass	(1977)	wrote,	“The	accumulated	findings	of	.	.	.	studies
should	be	regarded	as	complex	data	points,	no	more	comprehensible	without	statistical	analysis	than
hundreds	of	data	points	in	a	single	study”	(p.	352).

By	the	mid-1970s	several	high-profile	applications	of	quantitative	synthesis	techniques	focused	the
spotlight	squarely	on	meta-analysis.	Each	of	three	research	teams	concluded	that	the	traditional	research
synthesis	simply	would	not	suffice.	Largely	independently,	they	rediscovered	and	reinvented	Pearson’s
and	Fisher’s	solutions	to	their	problem.	In	clinical	psychology,	Smith	and	Glass	(1977)	assessed	the
effectiveness	of	psychotherapy	by	combining	833	tests	of	the	effectiveness	of	different	treatment.	In
social	psychology,	Rosenthal	and	Rubin	(1978)	presented	a	research	synthesis	of	345	studies	on	the
effects	of	interpersonal	expectations	on	behavior.	In	education,	Glass	and	Smith	(1979)	conducted	a
synthesis	of	the	relation	between	class	size	and	academic	achievement.	It	included	725	estimates	of	the
relation	based	on	data	from	nearly	900,000	students.	In	personnel	psychology,	Hunter,	Schmidt,	and
Hunter	(1979)	uncovered	866	comparisons	of	the	differential	validity	of	employment	tests	for	black	and
white	workers.

Independent	of	the	meta-analysis	movement	but	at	about	the	same	time,	several	attempts	were	made	to
draw	research	synthesis	into	a	broad	scientific	context.	In	1971,	Feldman	published	an	article	titled
“Using	the	Work	of	Others:	Some	Observations	on	Reviewing	and	Integrating,”	in	which	he	wrote,
“Systematically	reviewing	and	integrating	.	.	.	the	literature	of	a	field	may	be	considered	a	type	of
research	in	its	own	right—one	using	a	characteristic	set	of	research	techniques	and	methods”	(p.	86).	In
the	same	year,	Light	and	Smith	(1971)	argued	that	if	treated	properly,	the	variation	in	outcomes	among
related	studies	could	be	a	valuable	source	of	information,	rather	than	a	source	of	consternation,	as	it
appeared	to	be	when	treated	with	traditional	synthesis	methods.	Taveggia	(1974)	described	six	common
activities	in	literature	syntheses:	selecting	research;	retrieving,	indexing,	and	coding	studies;	analyzing
the	comparability	of	findings;	accumulating	comparable	findings;	analyzing	the	resulting	distributions;
and	reporting	the	results.

Two	articles	that	appeared	in	the	Review	of	Educational	Research	in	the	early	1980s	brought	the	meta-
analytic	and	synthesis-as-research	perspectives	together.	First,	Jackson	(1980)	proposed	six	synthesis
tasks	“analogous	to	those	performed	during	primary	research”	(p.	441).	In	1982	I	took	the	analogy
between	research	synthesis	and	primary	research	to	its	logical	conclusion	and	presented	a	five-stage
model	with	accompanying	threats	to	validity.	This	article	was	the	precursor	of	the	first	edition	of	this	book
(Cooper,	1982).

Also	in	the	1980s,	five	books	appeared	that	were	devoted	primarily	to	meta-analytic	methods.	Glass,
McGaw,	and	Smith	(1981)	presented	meta-analysis	as	a	new	application	of	analysis	of	variance	and
multiple	regression	procedures,	with	effect	sizes	treated	as	the	dependent	variable.	Hunter,	Schmidt,	and
Jackson	(1982)	introduced	meta-analytic	procedures	that	focused	on	(a)	comparing	the	observed	variation
in	study	outcomes	to	that	expected	by	chance	and	(b)	correcting	observed	correlations	and	their	variance
for	known	sources	of	bias	(e.g.,	sampling	errors,	range	restrictions,	unreliability	of	measurements).
Rosenthal	(1984)	presented	a	compendium	of	meta-analytic	methods	covering,	among	other	topics,	the
combining	of	significance	levels,	effect	size	estimation,	and	the	analysis	of	variation	in	effect	sizes.
Rosenthal’s	procedures	for	testing	moderators	of	effect	size	estimates	were	not	based	on	traditional
inferential	statistics,	but	on	a	new	set	of	techniques	involving	assumptions	tailored	specifically	for	the
analysis	of	study	outcomes.	Light	and	Pillemer	(1984)	presented	an	approach	that	placed	special
emphasis	on	the	importance	of	meshing	both	numbers	and	narrative	for	the	effective	interpretation	and
communication	of	synthesis	results.	Finally,	in	1985,	with	the	publication	of	Statistical	Methods	for	Meta-
Analysis,	Hedges	and	Olkin	helped	elevate	the	quantitative	synthesis	of	research	to	an	independent
specialty	within	the	statistical	sciences.	Their	book	summarized	and	expanded	nearly	a	decade	of
programmatic	developments	by	the	authors	and	established	the	procedures’	legitimacy	by	presenting
rigorous	statistical	proofs.

Since	the	mid-1980s,	a	large	and	growing	number	of	books	have	appeared	on	research	synthesis	and
meta-analysis.	Some	of	these	treat	the	topic	generally	(e.g.,	this	text;	Card,	2012;	Lipsey	&	Wilson,	2001;



Petticrew	&	Roberts,	2006;	Schmidt	&	Hunter,	2015),	some	treat	it	from	the	perspective	of	particular
research	designs	(e.g.,	Bohning,	Kuhnert,	&	Rattanasiri,	2008;	Eddy,	Hassleblad,	&	Schachter,	1992),	and
some	are	tied	to	particular	software	packages	(e.g.,	Arthur,	Bennett,	&	Huffcutt,	2001;	Chen	&	Peace,
2013;	Comprehensive	Meta-Analysis,	2015).	In	1994,	the	first	edition	of	The	Handbook	of	Research
Synthesis	was	published,	and	the	second	edition	appeared	in	2009	(Cooper	et	al.,	2009).1

The	Stages	of	Research	Synthesis
Textbooks	on	social	research	methodology	present	research	projects	as	a	sequenced	set	of	activities.
Although	methodologists	differ	somewhat	in	their	definitions	of	research	stages,	the	most	important
distinctions	in	stages	can	be	identified	with	a	high	degree	of	consensus.

As	noted	previously,	I	argued	in	1982	that,	similar	to	primary	research,	a	research	synthesis	involved	five
distinct	stages	(Cooper,	1982).	The	stages	encompass	the	principal	tasks	that	need	to	be	undertaken	so
that	the	synthesists	produce	an	unbiased	description	of	the	cumulative	state	of	evidence	on	a	research
problem	or	hypothesis.	For	each	stage	I	codified	the	research	question	asked,	its	primary	function	in	the
synthesis,	and	the	procedural	differences	that	might	cause	variation	in	conclusions.	For	example,	in	both
primary	research	and	research	synthesis,	the	problem	formulation	stage	involves	defining	the	variables	of
interest	and	the	data	collection	stage	involves	gathering	the	evidence.	Similar	to	primary	data	collectors,
you	can	make	different	choices	about	how	to	carry	out	your	inquiry;	differences	in	your	choices	can
create	differences	in	your	conclusions.

Most	importantly,	each	methodological	decision	at	each	stage	of	a	synthesis	may	enhance	or	undermine
the	trustworthiness	of	its	conclusion	or,	in	common	social	science	parlance,	can	create	threats	to	the
validity	of	its	conclusions.	(A	formal	definition	of	the	word	validity	appears	in	Chapter	4.)	In	my	1982
article	and	earlier	editions	of	this	book,	I	applied	the	notion	of	threats	to	inferential	validity	to	research
synthesis.	I	identified	10	threats	to	validity	that	might	undermine	the	trustworthiness	of	the	finding
contained	in	a	research	synthesis.	I	focused	primarily	on	validity	threats	that	arise	from	the	procedures
used	to	cumulate	studies—for	example,	conducting	a	literature	search	that	missed	relevant	studies	with	a
particular	conclusion.	This	threats-to-validity	approach	was	subsequently	applied	to	research	synthesis	by
Matt	and	Cook	(1994,	revised	in	2009),	who	identified	over	20	threats,	and	Shadish	et	al.	(2002),	who
expanded	this	list	to	nearly	30	threats.	In	each	case,	the	authors	described	threats	related	to	potential
biases	caused	by	the	process	of	research	synthesis	itself	as	well	as	to	deficiencies	in	the	primary	research
that	made	up	the	evidence	base	of	the	synthesis—for	example,	the	lack	of	representation	of	important
participant	populations	in	the	primary	studies.

Table	1.2	summarizes	a	modification	of	the	model	that	appeared	in	early	editions	of	this	book	(Cooper,
2007,	presented	a	six-step	model).	In	my	newest	model,	the	process	of	research	synthesis	is	divided	into
seven	steps:

Step	1:	Formulating	the	problem
Step	2:	Searching	the	literature
Step	3:	Gathering	information	from	studies
Step	4:	Evaluating	the	quality	of	studies
Step	5:	Analyzing	and	integrating	the	outcomes	of	studies
Step	6:	Interpreting	the	evidence
Step	7:	Presenting	the	results

These	seven	steps	will	provide	the	framework	for	the	remainder	of	this	book.	Different	from	my	earlier
conceptualization,	the	new	model	separates	two	of	the	stages	into	four	separate	stages.	First,	the	(a)
literature	search	and	(b)	the	process	of	extracting	information	from	research	reports	are	now	treated	as
two	separate	stages.	Second,	the	processes	of	(a)	summarizing	and	integrating	the	evidence	from
individual	studies	and	(b)	interpreting	the	cumulative	findings	that	arise	from	these	analyses	are	treated
separately.	These	revisions	are	based	on	much	recent	work	that	suggests	these	activities	are	best	thought
of	as	independent.	They	require	separate	decisions	on	the	part	of	the	synthesists	and	make	use	of	distinct
methodological	tools.	For	example,	you	can	thoroughly	or	cursorily	search	a	literature.	Then	you	can	code
much	or	little	information	from	each	report,	in	a	reliable	or	unreliable	manner.	Similarly,	you	can
correctly	or	incorrectly	summarize	and	integrate	the	evidence	from	the	individual	studies	and	then,	even
if	correctly	summarized,	interpret	what	these	cumulative	findings	mean	either	accurately	or	inaccurately.







Also,	I	should	note	that	the	process	of	conducting	a	rigorous	research	synthesis,	indeed	any	rigorous
research,	is	never	as	linear	as	described	in	textbooks.	You	will	find	that	“problems”	you	encounter	at	later
stages	in	your	synthesis	will	require	you	to	backtrack	and	change	decisions	you	made	at	an	earlier	stage.
For	example,	your	literature	search	might	uncover	studies	that	suggest	you	redefine	the	topic	you	are
considering.	Or,	a	dearth	of	studies	with	the	desired	design—for	example	studies	with	experimental
manipulations—suggests	you	include	other	types	of	designs,	such	as	studies	that	only	correlated	the
variables	of	interest.	For	this	reason,	it	is	good	to	start	with	a	plan	for	your	synthesis	in	its	entirety	but
remain	open	to	the	possibility	of	altering	it	as	the	project	progresses.

Step	1:	Formulating	the	Problem
The	first	step	in	any	research	endeavor	is	to	formulate	the	problem.	During	problem	formulation,	the
variables	involved	in	the	inquiry	are	given	both	abstract	and	operational	definitions.	At	this	stage	you	ask,
“What	are	the	concepts	or	interventions	I	want	to	study?”	and	“What	operations	are	measureable
expressions	of	these	concepts	and	the	outcomes	that	interest	me?”	In	answering	these	questions,	you
determine	what	research	evidence	will	be	relevant	(and	irrelevant)	to	the	problem	or	hypothesis	of
interest.	Also,	during	problem	formulation,	you	decide	whether	you	are	interested	in	simply	describing
the	variable(s)	of	interest	or	in	investigating	a	relationship	between	two	or	more	variables,	and	whether
this	relationship	is	associational	or	causal	in	nature.

In	Chapter	2	I	examine	the	decision	points	you	will	encounter	during	the	problem	formulation	stage.
These	decision	points	relate	first	and	foremost	to	the	breadth	of	the	concepts	involved	in	the	relations	of
interest	and	how	these	correspond	to	the	operations	used	to	study	them.	They	also	relate	to	the	types	of
research	designs	used	in	the	primary	research	and	how	these	correspond	to	the	inferences	you	wish	to
make.

Step	2:	Searching	the	Literature
The	data	collection	stage	of	research	involves	making	a	choice	about	the	population	of	elements	that	will
be	the	target	of	the	study.	In	primary	social	science	research,	the	target	will	typically	include	human
individuals	or	groups.	In	research	synthesis,	identifying	target	populations	is	complicated	by	the	fact	that
you	want	to	make	inferences	about	two	targets.	First,	you	want	the	cumulative	result	to	reflect	the	results
of	all	previous	research	on	the	problem.	Second,	you	hope	that	the	included	studies	will	allow
generalizations	to	the	individuals	or	groups	that	are	the	focus	of	the	topic	area.

In	Chapter	3	I	present	a	discussion	of	methods	for	locating	studies.	The	discussion	includes	a	listing	of
the	sources	of	studies	available	to	social	scientists,	how	to	access	and	use	the	most	important	sources,



and	what	biases	may	be	present	in	the	information	contained	in	each	source.

Step	3:	Gathering	Information	From	Studies
The	study	coding	stage	requires	that	researchers	consider	what	information	they	want	to	gather	from
each	unit	of	research.	In	primary	research,	the	data-gathering	instruments	might	include	questionnaires,
behavior	observations,	and/or	physiological	measures.	In	research	synthesis,	this	involves	the	information
about	each	study	that	you	have	decided	is	relevant	to	the	problem	of	interest.	This	information	will
include	not	only	characteristics	of	the	studies	that	are	relevant	to	the	theoretical	or	practical	questions—
that	is,	about	the	nature	of	the	independent	and	dependent	variables—but	also	about	how	the	study	was
conducted,	its	research	design,	implementation,	and	statistical	results.	Beyond	deciding	what	information
to	collect	and	giving	this	clear	definition,	this	stage	requires	that	you	develop	a	procedure	for	training	the
people	who	will	gather	the	information	and	ensuring	that	they	do	so	in	a	reliable	and	interpretable
manner.

Chapter	4	will	present	some	concrete	recommendations	about	what	information	you	should	collect	from
empirical	studies	that	have	been	judged	relevant	to	your	problem.	It	also	introduces	the	steps	that	need
to	be	taken	to	properly	train	the	people	who	will	act	as	study	coders.	Also,	Chapter	4	contains	some
recommendations	concerning	what	you	can	do	when	research	reports	are	unavailable	or	when	obtained
reports	do	not	have	the	information	you	need	in	them.

Step	4:	Evaluating	the	Quality	of	Studies
After	data	are	collected,	the	researcher	makes	critical	judgments	about	the	“quality”	of	data,	or	its
correspondence	to	the	question	that	is	motivating	the	research.	Each	data	point	is	examined	in	light	of
surrounding	evidence	to	determine	whether	it	is	too	contaminated	by	factors	irrelevant	to	the	problem
under	consideration	to	be	of	value	in	the	research.	If	it	is,	the	bad	data	must	be	discarded	or	given	little
credibility.	For	example,	primary	researchers	examine	how	closely	the	research	protocol	was	followed
when	each	participant	took	part	in	the	study.	Research	synthesists	evaluate	the	methodology	of	studies	to
determine	if	the	manner	in	which	the	data	were	collected	might	make	it	inappropriate	for	addressing	the
problem	at	hand.

In	Chapter	2,	I	discuss	how	research	designs	(e.g.,	associational	or	causal)	correspond	to	different
research	problems	and	in	Chapter	5	I	discuss	how	to	evaluate	the	quality	of	research.	I	also	look	at	biases
in	quality	judgments	and	make	some	suggestions	concerning	the	assessment	of	interjudge	reliability.

Step	5:	Analyzing	and	Integrating	the	Outcomes	of	Studies
During	data	analysis,	the	separate	data	points	collected	by	the	researcher	are	summarized	and	integrated
into	a	unified	picture.	Data	analysis	demands	that	the	researcher	distinguish	systematic	data	patterns
from	“noise”	(or	chance	fluctuation).	In	both	primary	research	and	research	synthesis,	this	process
typically	involves	the	application	of	statistical	procedures.

In	Chapter	6	I	explain	some	methods	for	combining	the	results	of	separate	studies,	or	methods	of	meta-
analysis.	Also,	I	show	how	to	estimate	the	magnitude	of	a	relationship	or	the	impact	of	an	intervention.
Finally,	I	illustrate	some	techniques	for	analyzing	why	different	studies	find	different	relationship
strengths.

Step	6:	Interpreting	the	Evidence
Next,	the	researcher	interprets	the	cumulative	evidence	and	determines	what	conclusions	are	warranted
by	the	data.	These	conclusions	can	relate	to	the	evidence	with	regard	to	whether	the	relation(s)	of
interest	are	supported	by	the	data	and,	if	so,	with	what	certainty.	They	can	also	relate	to	the	generality
(or	specificity)	of	the	findings	over	different	types	of	units,	treatments,	outcomes,	and	situations.

In	Chapter	7	I	examine	some	of	the	decision	rules	you	should	apply	as	you	make	assertions	about	what
your	research	synthesis	says.	This	includes	some	ideas	about	interpreting	the	strength	and	generality	of
conclusions	as	well	as	the	magnitude	of	relationships	or	intervention	effects.

Step	7:	Presenting	the	Results
Creating	a	public	document	that	describes	the	investigation	is	the	task	that	completes	a	research
endeavor.	In	Chapter	8	I	offer	some	concrete	guidelines	for	what	information	needs	to	be	reported
regarding	how	the	other	six	stages	of	the	research	synthesis	were	carried	out.

Twenty	Questions	About	Research	Syntheses



I	will	frame	the	discussion	of	the	stages	of	research	synthesis	by	referring	to	20	questions	producers	and
consumers	of	research	syntheses	might	ask	that	relate	to	the	validity	of	conclusions.	In	my	teaching,	I
have	found	this	approach	is	easy	to	follow	and	helps	students	keep	the	big	picture	in	mind	as	they	move
through	the	process.	Each	question	is	phrased	so	that	an	affirmative	response	would	mean	confidence
could	be	placed	in	the	conclusions	of	the	synthesis.	The	relevant	questions	will	be	presented	at	the
beginning	of	the	discussion	of	each	stage	and	will	be	followed	by	the	related	procedural	variations	that
might	enhance	or	compromise	the	trustworthiness	of	conclusions—in	other	words,	what	needs	to	be	done
to	answer	the	question	“yes.”	Although	the	20	questions	are	not	an	exhaustive	list	of	those	that	might	be
asked,	most	of	the	threats	to	validity	identified	in	early	editions	of	this	work	find	expression	in	the
questions.	A	list	of	the	questions	appears	in	Table	1.3.	I	will	return	to	a	discussion	of	the	threats	to
validity	of	a	research	synthesis	in	Chapter	9.



SOURCE:	Adapted	from	Cooper,	H.	(2007).	Evaluating	and	Interpreting	Research	Syntheses	in	Adult	Learning	and	Literacy.
Boston:	National	Center	for	the	Study	of	Adult	Learning	and	Literacy,	World	Education,	Inc.,	p.	52.

Four	Examples	of	Research	Synthesis
I	have	chosen	four	research	syntheses	to	illustrate	the	practical	aspects	of	conducting	rigorous
summaries	of	research.	The	topics	of	the	four	syntheses	represent	a	broad	spectrum	of	social	and
behavioral	science	research,	encompassing	research	from	basic	and	applied	social	psychology,
developmental	psychology,	curriculum	and	instruction	in	education,	and	the	health-related	professions.
They	involve	diverse	conceptual	and	operational	variables.	Some	are	also	interdisciplinary	in	nature.
More	and	more,	research	involves	scholars	drawn	from	different	disciplines.	Research	syntheses	are	no
different.	One	example	I	use—on	aerobic	exercise—involved	researchers	from	a	department	of	psychiatry
and	behavioral	medicine	in	a	School	of	Medicine	and	others	from	a	department	of	psychology	and
neuroscience	in	a	College	of	Arts	and	Sciences.	In	these	circumstances,	the	different	team	members	bring
different	perspectives	on	the	problem.	This	can	help	with	the	identification	of	what	variations	in	the
conceptual	and	operational	definition	of	variables	will	be	important	as	well	as	where	to	look	for	relevant
studies.	It	is	not	unusual	for	these	teams	to	include	a	member	who	has	advanced	knowledge	of	the
statistical	techniques	needed	to	perform	a	quantitative	integration	of	the	results	of	studies.

Even	though	the	topics	are	very	different,	they	are	also	general	enough	that	readers	in	any	discipline
should	find	all	four	topics	instructive	and	easy	to	follow	without	a	large	amount	of	background	in	the
separate	research	areas.	Most	importantly,	they	cover	research	syntheses	involving	research	designs	that



have	relevance	to	any	topic	area.	You	should	be	able	to	find	among	them	a	research	paradigm	that	fits
your	particular	topic	of	interest.	A	brief	introduction	to	each	topic	will	be	helpful.

The	Effects	of	Choice	on	Intrinsic	Motivation	(Patall,	Cooper,	&
Robinson,	2008)
The	ability	to	make	personal	choices—be	they	between	courses	of	action,	products,	or	candidates	for
political	office,	to	name	just	a	few—is	central	to	Western	culture.	Not	surprisingly,	then,	many
psychological	theories	posit	that	providing	individuals	with	choices	between	tasks	will	improve	their
motivation	to	engage	in	the	chosen	activity.	In	this	research	synthesis,	we	examined	the	role	of	choice	in
motivation	and	behavior.	First,	we	examined	the	overall	effect	of	choice	on	intrinsic	motivation	and
related	outcomes.	We	also	examined	whether	the	effect	of	choice	was	enhanced	or	diminished	by	a
number	of	theoretically	derived	moderators	including	the	type	of	choice,	the	number	of	options	in	the
choice,	and	the	total	number	of	choices	made.	In	this	synthesis,	the	studies	primarily	used	experimental
designs	and	were	conducted	in	social	psychology	laboratories.

The	study	was	published	in	a	journal	serving	a	broad	audience.	It	draws	its	topic	from	literatures	in	both
social	and	developmental	psychology.	All	the	research	designs	it	covers	involved	experimental
manipulations	with	random	assignment	of	subjects	to	conditions.

The	Effect	of	Homework	on	Academic	Achievement	(Cooper,
Robinson,	&	Patall,	2006)
Requiring	students	to	carry	out	academic	tasks	during	nonschool	hours	is	a	practice	as	old	as	formal
schooling	itself.	However,	the	effectiveness	of	homework	is	still	a	source	of	controversy.	Public	opinion
about	homework	fluctuated	throughout	the	20th	century,	and	the	controversy	continues	today.	This
synthesis	focused	on	answering	a	simple	question	reflected	in	the	article’s	title:	“Does	homework	improve
academic	achievement?”	We	also	looked	at	moderators	of	homework’s	effects,	including	the	student’s
grade	level	and	the	subject	matter.

This	research	synthesis	focuses	on	a	topic	drawn	from	the	education	literature	on	instruction.	It	involved
summarizing	results	from	a	few	experimental	studies	using	random	and	nonrandom	(whole	classroom)
assignment.	These	studies	were	conducted	in	actual	classrooms.	Several	studies	that	applied	statistical
models	(multiple	regressions,	path	analyses,	structural	equation	models)	to	large	databases	were	also
included,	as	were	many	studies	that	simply	correlated	the	time	a	student	spent	on	homework	with	a
measure	of	academic	achievement.

Individual	Differences	in	Attitudes	Toward	Rape	(Anderson,	Cooper,	&
Okamura,	1997)
Rape	is	a	serious	social	problem.	Every	day,	many	women	are	forced	by	men	to	have	sex	without	the
woman’s	consent.	This	research	synthesis	examined	the	demographic,	cognitive,	experiential,	affective,
and	personality	correlates	of	attitudes	toward	rape.	We	found	research	that	looked	at	the	attitudes	of	both
men	and	women.	Demographic	correlates	of	attitudes	toward	rape	included	age,	ethnicity,	and
socioeconomic	status	(SES).	Experiential	correlates	included	involvement	in	previous	rapes,	knowing
others	who	had	been	in	a	rape,	and	use	of	violent	pornography.	Personality	correlates	included	the	need
for	power	and	self-esteem.	What	value	is	there	in	summarizing	research	on	rape	attitudes?	We	hoped	our
synthesis	would	be	used	to	improve	programs	meant	to	prevent	rape	by	helping	identify	people	who
would	benefit	most	from	rape	prevention	interventions.

These	studies	were	drawn	from	applied	social	psychology	and	were	all	correlational	in	nature.	It
cumulated	studies	associating	a	measure	of	an	attitude	or	belief	(about	rape)	with	an	individual
differences	measure.

Aerobic	Exercise	and	Neurocognitive	Performance	(Smith	et	al.,
2010)
Does	physical	exercise	improve	our	ability	to	focus	on	and	remember	things?	If	so,	exercise	interventions
could	be	used	to	counteract	losses	in	attention,	executive	functioning	(the	ability	to	manage	or	regulate
cognitive	tasks),	and	memory.	This	might	provide	physicians	with	a	way	to	forestall	cognitive	impairment
due	to	age	and	dementia	and	even	to	lengthen	life.	While	many	studies	have	been	conducted	on	whether
exercise	improves	neurocognitive	performance,	we	found	that	past	reviews	of	this	literature	could	not
come	to	consensus	on	the	magnitude	of	the	effect.	Nor	did	past	reviews	carefully	examine	possible
influences	on	the	results	of	different	studies.	Therefore,	we	conducted	a	meta-analysis	examining	(a)	the
effects	of	aerobic	exercise	interventions	on	cognitive	abilities	such	as	attention,	processing	speed	and
executive	functioning,	working	memory,	and	memory;	(b)	how	features	of	the	exercise	intervention	(e.g.,



its	components,	duration,	and	intensity)	influenced	its	outcomes;	and	(c)	how	individual	differences
between	participants	(e.g.,	age,	initial	level	of	cognitive	functioning)	might	influence	exercise	effects.	We
included	only	studies	that	used	experimental	manipulations	of	exercise	and	randomly	assigned
participants	to	conditions.

This	synthesis	was	based	on	studies	of	health	interventions.	They	were	all	experimental	in	nature	and
used	random	assignment	of	subjects	in	field	settings.

Exercise
The	best	way	to	benefit	from	reading	this	book	is	to	plan	and	conduct	a	research	synthesis	in	an	area	of	interest	to	you.	The
synthesis	should	attempt	to	apply	the	guidelines	outlined	in	the	chapters	that	follow.	If	such	an	ambitious	undertaking	is	not
possible,	you	should	try	to	conduct	the	more	discrete	exercises	that	appear	at	the	end	of	each	chapter.	Often,	these	exercises
can	be	further	simplified	by	dividing	the	work	among	members	of	your	class.

Note
1.	Chalmers,	Hedges	and	Cooper,	(2002)	also	present	a	brief	history	of	meta-analysis.	Hunt	(1997)	wrote
a	popular	book	describing	the	early	history	of	meta-analysis	that	contains	interviews	with	the	principal
contributors.	A	special	issue	of	the	journal	Research	Synthesis	Methodology	(2015)	provides	first	person
accounts	by	developers	of	the	early	research	synthesis	and	meta-analytic	methods.



2	Step	1	Formulating	the	Problem

What	research	evidence	will	be	relevant	to	the	problem	or	hypothesis	of	interest	in	the	synthesis?

Primary	Function	Served	in	the	Synthesis
To	define	the	(a)	variables	and	(b)	relationships	of	interest	so	that	relevant	and	irrelevant	studies	can	be	distinguished
from	one	another

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
Variation	in	the	conceptual	breadth	and	distinctions	within	definitions	might	lead	to	differences	in	the	research
operations	(a)	deemed	relevant	and/or	(b)	tested	as	moderating	influences.

Questions	to	Ask	When	Evaluating	the	Formulation	for	a	Problem	in	a
Research	Synthesis

1.	 Are	the	variables	of	interest	given	clear	conceptual	definitions?
2.	 Do	the	operations	that	empirically	define	each	variable	of	interest	correspond	to	the	variable’s	conceptual

definition?
3.	 Is	the	problem	stated	so	the	research	designs	and	evidence	needed	to	address	it	can	be	specified	clearly?
4.	 Is	the	problem	placed	in	a	meaningful	theoretical,	historical,	and/or	practical	context?

This	chapter	describes
The	relationship	between	concepts	and	operations	in	research	synthesis
How	to	judge	the	relevance	of	primary	research	to	a	research	synthesis	problem
The	correspondence	between	research	designs	and	research	synthesis	problems
The	distinction	between	study-generated	and	synthesis-generated	evidence
The	treatment	of	main	effects	and	interactions	in	research	synthesis
Approaches	to	establishing	the	value	of	a	new	research	synthesis
The	role	of	previous	syntheses	in	new	synthesis	efforts

All	empirical	research	begins	with	a	careful	consideration	of	the	problem	that	will	be	the	focus	of	study.	In
its	most	basic	form,	the	research	problem	includes	the	definition	of	two	variables	and	the	rationale	for
studying	their	association.	One	rationale	can	be	that	a	theory	predicts	a	particular	association	between
the	variables,	be	it	a	causal	relationship	or	a	simple	association,	positive	or	negative.	For	example,	self-
determination	theory	(Deci	&	Ryan,	2013)	predicts	that	providing	people	with	choices	in	what	task	to
perform	or	how	to	perform	it	will	have	a	positive	causal	effect	on	people’s	intrinsic	motivation	to	do	the
task	and	persist	at	it.	So	manipulating	choice,	then	measuring	intrinsic	motivation,	will	provide	evidence
on	the	veracity	of	the	theory.	Or	a	different	rationale	can	be	that	some	practical	consideration	suggests
that	any	discovered	relation	might	be	important.	For	example,	discovering	the	individual	differences	that
correlate	with	attitudes	about	rape,	even	if	there	is	little	theory	to	guide	us	about	what	relationships	to
expect,	might	suggest	ways	to	improve	programs	meant	to	prevent	rape	by	helping	identify	people	who
would	benefit	most	from	different	types	of	prevention	interventions.	Either	rationale	can	be	used	for
undertaking	primary	research	or	research	syntheses.

The	choice	of	a	problem	to	study	in	primary	research	is	influenced	by	your	interests	and	the	social
conditions	that	surround	you.	This	holds	true	as	well	for	your	choice	of	topics	in	research	synthesis,	with
one	important	difference.	When	you	do	primary	research,	you	are	limited	in	your	topic	choice	only	by
your	imagination.	When	you	conduct	a	research	synthesis,	you	must	study	topics	that	already	appear	in
the	literature.	In	fact,	a	topic	is	probably	not	suitable	for	research	synthesis	unless	it	already	has	created
sufficient	interest	within	a	discipline	or	disciplines	to	inspire	enough	research	to	merit	an	effort	at
bringing	it	all	together.

The	fact	that	syntheses	are	tied	to	only	those	problems	that	have	generated	previous	research	does	not
mean	research	synthesis	is	less	creative	than	primary	data	collection.	Rather,	your	creativity	will	be	used
in	different	ways	in	research	synthesis.	Creativity	enters	a	research	synthesis	when	you	must	propose
overarching	schemes	that	help	make	sense	of	many	related,	but	not	identical,	studies.	The	variation	in
methods	across	studies	is	always	much	greater	than	the	variation	in	procedures	used	in	any	single	study.
For	example,	studies	of	choice	and	intrinsic	motivation	vary	in	the	types	of	choices	they	allow,	some
involving	choices	among	tasks	(e.g.,	anagrams	versus	number	games)	and	others	involving	choices	among
the	circumstances	under	which	the	task	will	be	performed	(e.g.,	the	color	of	the	stimuli,	whether	to	use	a
pen	or	pencil),	to	name	just	two	types	of	variations.

As	a	synthesist,	you	may	find	little	guidance	about	how	these	variations	should	be	meaningfully	grouped
to	determine	if	they	affect	the	relationship	between	choice	and	motivation.	(Will	grouping	the	choice



manipulations	depending	on	whether	they	are	task	relevant	versus	task	irrelevant	lead	to	an	important
discovery?)	Or	theories	may	suggest	meaningful	groupings,	but	it	will	be	up	to	you	to	discover	what	these
theoretical	predictions	are.	(What	does	self-determination	theory	say	the	effect	of	task	relevance	should
be	on	how	the	ability	to	choose	affects	motivation?)	Defining	meaningful	groupings	of	studies	and
justifying	their	use	will	be	up	to	you.	Your	capacity	for	uncovering	variables	that	explain	why	results	differ
in	different	studies	and	your	ability	to	generate	explanations	for	these	relationships	are	creative	and
challenging	aspects	of	the	research	synthesis	process.

Definition	of	Variables	in	Social	Science	Research

Similarities	in	Concepts	and	Operations	in	Primary	Research	and
Research	Synthesis
The	variables	involved	in	any	social	science	study	must	be	defined	in	two	ways.	First,	the	variables	must
be	given	conceptual	definitions.	The	term	conceptual	definitions	describes	qualities	of	the	variable	that
are	independent	of	time	and	space	but	can	be	used	to	distinguish	observable	events	that	are	and	are	not
relevant	to	the	concept.	For	instance,	a	conceptual	definition	of	the	word	achievement	might	be	“a
person’s	level	of	knowledge	in	academic	domains.”	The	term	neurocognitive	functioning	might	be
conceptually	defined	as	“mental	processes	associated	with	particular	areas	of	the	brain.”	The	term
homework	might	be	conceptually	defined	as	“tasks	assigned	by	teachers	meant	to	be	carried	out	during
nonschool	hours.”

Conceptual	definitions	can	differ	in	their	breadth—that	is,	in	the	number	of	events	to	which	they	refer.
Thus,	if	achievement	is	defined	as	“something	gained	through	effort	or	exertion,”	the	concept	is	broader
than	it	is	if	you	use	the	definition	in	the	paragraph	above,	relating	solely	to	academics.	The	second
definition	would	consider	as	achievement	the	effort	exerted	in	social,	physical,	and	political	spheres,	as
well	as	academic	ones.	When	concepts	are	broader,	we	also	can	say	they	are	more	abstract.

Both	primary	researchers	and	research	synthesists	must	choose	a	conceptual	definition	and	a	degree	of
breadth	for	their	problem	variables.	Both	must	decide	how	likely	it	is	that	an	event	represents	an	instance
of	the	variable	of	interest.	Although	it	is	sometimes	not	obvious,	even	very	concrete	variables,	such	as
homework,	require	conceptual	definitions.	So,	the	first	question	to	ask	yourself	about	how	you	have
formulated	the	problem	for	your	research	synthesis	is,

Are	the	variables	of	interest	given	clear	conceptual	definitions?

In	order	to	relate	concepts	to	observable	events,	a	variable	must	also	be	operationally	defined.	An
operational	definition	is	a	description	of	observable	characteristics	that	determine	if	the	event	represents
an	occurrence	of	the	conceptual	variable.	Put	differently,	a	concept	is	operationally	defined	when	the
procedures	used	to	make	it	observable	and	measurable	are	openly	and	distinctly	stated.	For	example,	an
operational	definition	of	the	concept	intrinsic	motivation	might	include	“the	amount	of	time	a	person
spends	on	a	task	during	a	free-time	period.”	Again,	both	primary	researchers	and	research	synthesists
must	specify	the	operations	included	in	their	conceptual	definitions.

Differences	in	Concepts	and	Operations	in	Primary	Research	and
Research	Synthesis
Differences	in	how	variables	are	defined	can	also	be	found	between	the	two	types	of	research.	Primary
researchers	have	little	choice	but	to	define	their	concepts	operationally	before	they	begin	their	studies.
They	cannot	start	collecting	data	until	the	variables	in	the	study	have	been	given	an	empirical	reality.
Primary	researchers	studying	choice	must	define	how	choice	will	be	manipulated	or	measured	before
they	can	run	their	first	participant.

On	the	other	hand,	research	synthesists	need	not	be	quite	so	operationally	precise,	at	least	not	initially.
For	them,	the	literature	search	can	begin	with	only	a	conceptual	definition	and	a	few	known	operations
relevant	to	it.	Then,	the	associated	operations	can	be	filled	out	as	the	synthesists	become	more	familiar
with	the	research	literature.	For	example,	you	might	know	that	you	are	interested	in	interventions	meant
to	increase	physical	activity	among	adults.	Once	you	begin	the	literature	search,	you	might	also	find	types
of	interventions	you	were	unaware	existed.	You	might	have	thought	of	exercises	classes	but	then	find	in
the	literature	interventions	involving	self-monitoring	(keeping	a	diary	of	physical	activity),	social	modeling
(watching	others	exercise),	and	providing	a	health-risk	appraisal.	Each	of	these	might	encourage	exercise
without	directly	manipulating	it.	You	might	also	find	interventions	that	involve	lifting	weights	and	other
exercises	that	increase	strength	but	do	not	involve	aerobic	activities	(e.g.,	walking,	jogging,	biking).	As	a
research	synthesist,	you	have	the	comparative	luxury	of	being	able	to	evaluate	the	conceptual	relevance
of	different	operations	as	you	find	them	in	the	literature.	You	can	even	change	your	conceptual	definition



depending	on	the	potentially	relevant	operational	definitions	your	concept	might	cover	that	had	not
occurred	to	you	when	you	began.	Is	weight	training	an	intervention	you	are	interested	in	if	you	are
studying	neurocognitive	functioning,	or	is	your	conceptual	definition	better	cast	as	“aerobic	exercise
interventions,”	thus	excluding	weight	training?	Primary	researchers	do	not	have	this	luxury,	at	least	not
without	considerable	retooling	of	their	study	after	it	has	begun.

Of	course,	some	a	priori	specification	of	operations	is	necessary,	and	you	need	to	begin	your	synthesis
with	a	conceptual	definition	and	at	least	a	few	empirical	realizations	in	mind.	However,	during	a	literature
search,	it	is	not	unusual	to	come	across	operations	that	you	did	not	know	existed	but	are	relevant	to	the
construct	you	are	studying.	In	sum,	primary	researchers	must	know	exactly	what	operational	definitions
are	of	interest	(i.e.,	those	that	will	be	measured	or	manipulated	in	their	study)	before	they	begin
collecting	data.	Research	synthesists	may	discover	unanticipated	operations	that	fit	into	the	relevant
domain	along	the	way.

Another	distinction	between	the	two	types	of	inquiry	is	that	primary	studies	typically	involve	only	one	or	a
few	operational	definitions	of	the	same	construct.	A	particular	exercise	regimen	or	measure	of	academic
achievement	must	be	in	hand	before	data	collection	begins.	In	contrast,	research	syntheses	usually
involve	many	empirical	realizations	for	each	variable	of	interest.	Although	no	two	participants1	are
treated	exactly	alike	in	any	single	study,	this	variation	will	ordinarily	be	small	compared	to	variation
introduced	by	the	differences	in	the	way	participants	are	treated	and	outcomes	are	measured	in	separate
studies.	For	example,	a	single	study	of	choice	and	motivation	might	involve	giving	participants	a	choice	to
do	either	anagrams	or	sudokus.	However,	the	synthesists	looking	at	all	the	choice	studies	that	have	been
conducted	might	find	manipulations	using	anagrams,	crosswords,	sudokus,	word	finds,	cryptograms,
video	games,	and	so	on.	Add	to	this	the	fact	that	research	synthesists	will	also	find	much	greater	variation
in	the	location	in	which	studies	were	conducted	(different	geographical	regions,	labs,	classrooms,	or
places	of	work)	and	in	sampled	populations	(college	students,	children,	or	employees).	The	multiple
operations	contained	in	research	syntheses	introduce	a	set	of	unique	issues	that	need	to	be	examined
carefully.

Multiple	Operations	in	Research	Synthesis
Research	synthesists	must	be	aware	of	two	potential	incongruities	that	can	arise	because	of	the	variety	of
operations	they	encounter	in	the	literature.	First,	you	might	begin	a	literature	search	with	broad
conceptual	definitions	in	mind.	However,	you	may	discover	that	the	operations	used	in	previous	relevant
research	have	been	narrower	than	your	concepts	imply.	For	instance,	a	synthesis	of	research	on	rape
attitudes	might	begin	with	a	broad	definition	of	rape,	including	any	instance	of	unwanted	sexual	relations,
even	women	forcing	sex	on	men.	However,	the	literature	search	might	reveal	that	past	research	dealt
only	with	men	as	the	perpetrators	of	rape.	When	such	a	circumstance	arises,	you	must	narrow	the
conceptual	underpinnings	of	the	synthesis	to	be	more	congruent	with	existing	operations.	Otherwise,	its
conclusions	might	appear	more	general	than	warranted	by	the	data.

The	opposite	problem,	starting	with	narrow	concepts	but	then	encountering	operational	definitions	that
suggest	the	concepts	of	interest	should	be	broadened,	can	also	confront	a	synthesist.	Our	example
regarding	the	definition	of	“achievement”	illustrates	this	problem.	You	might	begin	a	search	for	studies	on
homework	and	achievement	expecting	to	define	achievement	as	relating	solely	to	academic	material.
However,	in	perusing	the	literature,	you	might	encounter	studies	of	homework	in	classes	on	music	and
industrial	arts,	for	example.	These	studies	fit	the	definition	of	“homework”	(i.e.,	tasks	assigned	by
teachers	meant	to	be	carried	out	during	nonschool	hours),	but	the	outcome	variables	might	not	fit	the
definition	of	achievement	because	they	are	not	measures	of	verbal	or	quantitative	ability.	Should	these
studies	be	included?	It	would	be	fine	to	do	so	but	you	would	have	to	make	it	clear	that	your	conceptual
definition	of	achievement	now	has	broadened	to	include	performance	in	nonacademic	domains.

When	conducting	a	research	synthesis,	as	your	literature	search	proceeds,	it	is	very	important	that	you
take	care	to	reevaluate	the	correspondence	between	the	breadth	of	the	definitions	of	the	concepts	of
interest	and	the	variation	in	operations	that	primary	researchers	have	used	to	define	them.	Thus,	the	next
question	to	ask	yourself	as	you	evaluate	how	well	you	have	specified	the	problem	for	your	research
synthesis	is,

Do	the	operations	that	empirically	define	each	variable	of	interest	correspond	to	the	variable’s
conceptual	definition?

Make	certain	that	your	decisions	to	include	certain	studies	have	not	broadened	your	definitions	or	that
operations	missing	in	the	literature	do	not	suggest	that	the	conceptual	definitions	need	to	be	narrowed.
In	primary	research,	this	redefinition	of	a	problem	as	a	study	proceeds	is	frowned	upon.	In	research
synthesis,	it	appears	that	some	flexibility	may	be	necessary,	indeed	beneficial.



Multiple	Operationism	and	Concept-to-Operation	Correspondence
Webb,	Campbell,	Schwartz,	Sechrest,	and	Grove	(2000)	presented	strong	arguments	for	the	value	of
having	multiple	operations	to	define	the	same	underlying	construct.	They	define	the	term	multiple
operationism	as	the	use	of	many	measures	that	share	a	conceptual	definition	“but	have	different	patterns
of	irrelevant	components”	(p.	3).	Having	multiple	operations	of	a	construct	has	positive	consequences
because

once	a	proposition	has	been	confirmed	by	two	or	more	independent	measurement	processes,	the
uncertainty	of	its	interpretation	is	greatly	reduced.	.	.	.	If	a	proposition	can	survive	the	onslaught	of	a
series	of	imperfect	measures,	with	all	their	irrelevant	error,	confidence	should	be	placed	in	it.	Of
course,	this	confidence	is	increased	by	minimizing	error	in	each	instrument	and	by	a	reasonable	belief
in	the	different	and	divergent	effects	of	the	sources	of	error.	(Webb	et	al.,	pp.	3–4)

While	Webb	and	colleagues	hold	out	the	potential	for	strengthened	inferences	when	a	variety	of
operations	exists,	as	happens	in	a	research	synthesis,	their	parting	qualification	also	must	not	be	ignored.
Multiple	operations	can	enhance	concept-to-operation	correspondence	if	the	operations	encompassed	in
your	research	synthesis	are	individually	at	least	minimally	related	to	the	construct	(Eid	&	Diener,	2006).
This	reasoning	is	akin	to	the	reasoning	applied	in	classical	measurement	theory.	Small	correlations
between	individual	items	on	a	multi-item	test,	say	the	items	on	an	achievement	test,	and	a	participant’s
“true”	achievement	score	can	add	up	to	a	reliable	indicator	of	achievement	if	a	sufficient	number	of
minimally	valid	items	are	present.	Likewise,	the	conclusions	of	a	research	synthesis	will	not	be	valid	if	the
operations	in	the	covered	studies	bear	no	correspondence	to	the	underlying	concept	or	if	the	operations
share	a	different	concept	to	a	greater	degree	than	they	share	the	intended	one.	This	is	true	regardless	of
how	many	operations	are	included.

For	example,	it	is	easy	to	see	the	value	of	multiple	operations	when	thinking	about	outcome	variables.	We
are	confident	that	homework	affects	the	broad	conceptual	variable	“achievement”	when	we	have
measures	of	achievement	that	include	teacher-constructed	unit	tests,	class	grades,	and	standardized
achievement	tests,	and	the	relationship	between	homework	and	achievement	is	in	the	same	direction
regardless	of	the	achievement	measure.	We	are	less	confident	that	the	relationship	exists	if	only	class
grades	are	used	as	outcomes.	If	only	class	grades	are	used,	it	may	be	that	teachers	include	grades	on
homework	assignments	in	the	class	grade	and	this	explains	the	relationship,	whereas	homework	might
have	no	effect	if	unit	tests	or	standardized	tests	serve	as	measures.	These	tests	do	not	share	the	same
source	of	error.	But	unit	tests	are	highly	aligned	with	the	content	of	assignments,	whereas	standardized
achievement	tests	typically	are	not.

Thus,	when	multiple	operations	provide	similar	results,	they	suggest	the	operations	converge	on	the	same
construct,	and	our	confidence	grows	in	the	conclusions.	If	the	different	operations	do	not	lead	to	similar
results,	differences	between	the	operations	can	give	us	clues	about	limitations	to	our	conclusions.	For
example,	if	we	find	homework	influences	unit	tests	but	not	standardized	tests,	we	might	speculate	that
homework	influences	achievement	only	when	the	content	of	assignments	and	measures	of	achievement
are	highly	aligned.

The	value	of	multiple	operations	of	independent	variables	(those	manipulated	in	experiments	meant	to
test	theories)	or	intervention	variables	(treatments	in	applied	settings)	also	can	increase	our	confidence
in	conclusions.	For	example,	if	experimental	studies	of	exercise	interventions	were	all	conducted	using
the	same	duration	and	intensity	of	exercises,	we	would	not	know	whether	more	or	less	exercise	might
have	different	effects.	Is	there	a	threshold	below	which	exercise	has	no	effect?	Can	too	much	exercise
cause	fatigue	that	actually	interferes	with	cognitive	functioning?

In	sum,	the	existence	of	a	variety	of	operations	in	research	literatures	presents	the	potential	benefit	of
allowing	stronger	inferences	if	the	results	allow	you	to	rule	out	irrelevant	sources	of	influence.	If	results
are	inconsistent	across	operations,	it	allows	you	to	speculate	on	what	the	important	differences	between
operations	might	be.

The	use	of	operations	not	originally	related	to	the	concept.
Literature	searches	can	sometimes	uncover	research	that	has	been	cast	in	a	conceptual	framework
different	from	the	one	you	want	to	study	but	that	includes	operational	measures	or	manipulations
relevant	to	the	concepts	of	interest	to	you.	For	instance,	there	are	several	concepts	similar	to	“job
burnout”	that	appear	in	the	research	literature,	such	as	“occupational	stress”	and	“job	fatigue.”	It	is
important	to	consider	whether	the	operations	associated	with	these	different	constructs	are	relevant	to
your	synthesis,	even	if	they	have	been	labeled	differently.	When	relevant	operations	associated	with
different	abstract	constructs	are	identified,	they	most	certainly	should	be	considered	for	inclusion	in	your
synthesis.	In	fact,	different	concepts	and	theories	behind	similar	operations	can	often	be	used	to
demonstrate	the	robustness	of	results.	There	probably	is	no	better	way	to	ensure	that	operations	contain



different	patterns	of	error	than	to	have	different	researchers	with	different	theoretical	backgrounds
perform	related	investigations.

Substituting	new	concepts	for	old.
Sometimes	you	will	find	that	social	and	behavioral	scientists	introduce	new	concepts	(and	theories)	to
explain	old	findings.	For	example,	in	a	classic	social	psychology	experiment,	the	notion	of	“cognitive
dissonance”	was	used	to	explain	why	an	individual	who	is	paid	$1	to	voice	a	counterattitudinal	argument
subsequently	experiences	greater	attitude	change	than	another	person	paid	$25	to	perform	the	same
activity	(Festinger	&	Carlsmith,	1959).	Dissonance	theory	suggests	that	because	a	small	amount	of	money
is	not	sufficient	to	justify	the	espousal	of	the	counterattitudinal	argument,	the	person	feels	discomfort
that	can	be	reduced	only	through	a	shift	in	attitude.	However,	Bem	(1967)	recast	the	results	of	this
experiment	by	proposing	a	self-perception	theory.	Briefly,	he	speculated	that	participants	who	observed
themselves	espousing	counterattitudinal	arguments	inferred	their	opinions	the	same	way	as	an	observer:
if	participants	see	themselves	making	an	argument	for	$1,	they	assume	that	because	they	are	performing
the	behavior	with	little	justification,	they	must	feel	positive	toward	the	attitude	in	question	(just	like	an
observer	would	infer).

No	matter	how	many	replications	of	the	$1/$25	experiment	you	uncovered,	you	could	not	use	the	results
to	evaluate	the	correctness	of	either	of	the	two	theories.	You	must	take	care	to	differentiate	concepts	and
theories	that	predict	similar	and	different	results	for	the	same	set	of	operations.	If	predictions	are
different,	the	cumulative	evidence	can	be	used	to	evaluate	the	correctness	of	one	theory	or	another,	or
the	different	circumstances	in	which	each	theory	is	correct.	However,	if	the	theories	make	identical
predictions,	no	comparative	judgment	based	on	research	outcomes	is	possible.

The	effects	of	multiple	operations	on	synthesis	outcomes.
Multiple	operations	do	more	than	introduce	the	potential	for	more-nuanced	inferences	about	conceptual
variables.	They	are	also	the	most	important	source	of	variance	in	the	conclusions	of	different	syntheses
meant	to	address	the	same	topic.	A	variety	of	operations	can	affect	synthesis	outcomes	in	two	ways:

1.	 Differences	in	the	included	operational	definitions.	The	operational	definitions	used	in	two	research
syntheses	on	the	same	topic	can	be	different	from	one	another.	Two	synthesists	using	an	identical
label	for	an	abstract	concept	can	search	for	and	include	different	operational	definitions.	Each
definition	may	contain	some	operations	excluded	by	the	other,	or	one	definition	may	completely
contain	the	other.

2.	 Differences	in	operational	detail.	Multiple	operations	also	affect	outcomes	by	leading	to	variation	in
the	attention	that	synthesists	pay	to	methodological	distinctions	in	the	literature.	This	effect	is
attributable	to	differences	in	the	way	study	operations	are	treated	after	the	literature	has	been
searched.	At	this	point,	research	synthesists	become	detectives	who	search	for	“distinctive	clues
about	why	two	variables	are	related	differently	under	different	conditions”	(Cook	et	al.,	1992,	p.	22).
They	use	the	observed	data	patterns	as	clues	for	generating	explanations	that	specify	the	conditions
under	which	a	positive,	null,	or	negative	relationship	will	be	found	between	two	variables.

Synthesists	differ	in	how	much	detective	work	they	undertake.	Some	pay	careful	attention	to	study
operations.	They	decide	to	identify	meticulously	the	operational	distinctions	among	retrieved	studies.
Other	synthesists	believe	that	method-	or	participant-dependent	relations	are	unlikely,	or	they	may	simply
use	less	care	in	identifying	these	relations.

Defining	the	Relationship	of	Interest
Whether	you	are	doing	primary	research	or	research	synthesis,	in	addition	to	defining	the	concepts	you
must	also	decide	what	type	of	relationship	between	the	variables	is	of	interest	to	you.	While	your
conceptual	definition	of	the	variables	will	determine	the	relevance	of	different	operations,	it	is	the	type	of
relationship	that	will	determine	the	relevance	of	different	research	designs.	In	order	to	be	able	to
determine	the	appropriateness	of	different	research	designs,	there	are	three	questions	that	need	to	be
asked	about	the	problem	that	motivates	your	research	synthesis	(see	Cooper,	2006,	for	a	more	complete
discussion	of	these	issues):

1.	 Should	the	results	of	the	research	be	expressed	in	numbers	or	narrative?
2.	 Is	the	problem	you	are	studying	a	description	of	an	event,	an	association	between	events,	or	a	causal

explanation	of	an	event?
3.	 Does	the	problem	or	hypothesis	seek	to	understand	(a)	how	a	process	unfolds	within	an	individual

participant	over	time,	or	(b)	what	is	associated	with	or	explains	variation	between	participants	or
groups	of	participants?

Quantitative	or	Qualitative	Research?



With	regard	to	the	question,	“Should	the	results	of	the	research	be	expressed	in	numbers	or	narrative?”	it
should	be	clear	that	for	the	type	of	research	synthesis	I	am	focusing	on	here,	the	answer	is	“numbers.”
However,	this	does	not	mean	that	narrative	or	qualitative	research	will	play	no	role	in	quantitative
research	syntheses.	For	example,	in	our	synthesis	of	homework	research,	qualitative	studies	were	used	to
help	compile	a	list	of	possible	effects	of	homework,	both	good	and	bad.	In	fact,	even	opinion	pieces	were
used,	such	as	complaints	about	homework	(“It	creates	too	much	stress	for	children”)	that	appeared	in
newspaper	articles.

Qualitative	research	also	was	used	to	help	identify	possible	moderators	and	mediators	of	homework’s
effects.	For	example,	the	homework	literature	search	uncovered	a	survey	and	interview	study	(Younger	&
Warrington,	1996)	that	suggested	girls	generally	hold	more	positive	attitudes	than	boys	toward	homework
and	expend	greater	effort	on	doing	homework.	This	study	suggested	that	this	individual	difference	among
students	might	moderate	relationships	between	homework	and	achievement.	A	case	study	of	six	families
by	Xu	and	Corno	(1998)	involved	both	interviews	and	home	videotaping	to	examine	how	parents	structure
the	homework	environment	and	help	children	cope	with	distractions	so	they	can	pay	attention	to	the
homework	assignment.	This	study	clearly	argued	for	the	importance	of	parents	as	mediators	in	the
homework	process.

Of	course,	the	results	of	qualitative	research	can	also	be	the	central	focus	of	a	research	synthesis,	not	just
an	aid	to	quantitative	synthesis.	Discussions	of	how	to	carry	out	such	reviews	have	occupied	the	thoughts
of	scholars	much	better	versed	in	qualitative	research	than	me.	If	you	are	interested	in	this	type	of
research	synthesis,	you	might	examine	Sandelowski	and	Barroso	(2007)	and/or	Pope,	Mays,	and	Popay
(2007)	for	detailed	examinations	of	approaches	to	synthesizing	qualitative	research.

Description,	Association,	or	Causal	Relationship?

Descriptive	research.
The	second	question,	“Is	the	problem	you	are	studying	a	description	of	an	event,	an	association	between
events,	or	a	causal	explanation	of	an	event?”	divides	research	problems	into	three	groups.	First,	a
research	problem	might	be	largely	descriptive	and	take	the	general	form,	“What	is	happening?”	Here,	you
might	be	interested	in	obtaining	an	accurate	portrayal	of	some	event	or	other	phenomenon.	In	primary
research,	this	might	lead	you	to	conduct	a	survey	(Fowler,	2014).	For	example,	older	adults	might	be
asked	questions	about	the	frequency	of	their	physical	activity.	Your	conclusion	might	be	that	“X%	of
adults	over	the	age	of	Y	routinely	engage	in	physical	activity.”	In	research	synthesis,	you	would	collect	all
the	surveys	that	asked	a	particular	question	and,	perhaps,	average	the	estimates	of	frequency	in	order	to
get	a	more	precise	estimate.	Or	you	might	examine	moderators	and	mediators	of	survey	results.	For
example,	you	could	use	the	average	age	of	participants	in	the	surveys	to	test	the	hypothesis	that	physical
activity	deceases	with	age:	“Studies	with	an	average	participant	age	of	Y	revealed	more-frequent	activity
than	studies	with	an	average	participant	age	of	Z.”

It	is	rare	to	see	this	kind	of	descriptive	research	synthesis	in	the	scholarly	social	and	behavioral	science
literature.	However,	a	similar	procedure	does	appear	on	the	nightly	news	during	the	weeks	leading	up	to
an	election,	when	a	news	anchor	will	report	the	cumulative	findings	of	numerous	polls	of	voters	asking
about	support	for	candidates	or	ballot	issues.

Part	of	the	problem	with	synthesizing	descriptive	statistics	across	the	types	of	studies	that	appear	in
social	science	journals	is	that	the	studies	often	use	different	scales	to	operationalize	the	same	variable.
For	example,	it	would	be	difficult	to	synthesize	the	levels	of	activity	found	in	intervention	studies	because
some	studies	might	measure	activity	by	giving	participants	a	pedometer	and	counting	their	miles	walked.
Other	studies	might	measure	activity	by	gauging	lung	capacity.	Measuring	time	spent	on	homework
would	produce	less	difficulty.	Metrics	for	measuring	time	should	be	consistent	across	studies	or	easily
convertible	from	one	to	another	(e.g.,	hours	to	minutes).	Measures	of	achievement	would	likely	be
difficult	because	sometimes	it	will	be	measured	as	unit	tests,	sometimes	as	end-of-year	grades,	and
sometimes	as	scores	on	standardized	achievement	tests.2

Another	problem	with	aggregating	descriptive	statistics	is	that	it	is	rarely	clear	what	population	the
resulting	averages	refer	to.	Unlike	the	polls	that	precede	elections,	social	scientists	writing	for	scholarly
outlets	often	use	convenience	samples.	While	we	might	be	able	to	identify	the	population	(often	very
narrow)	from	which	the	participants	of	each	study	have	been	drawn,	it	is	rarely	possible	to	say	what
population	an	amalgamation	of	such	convenience	samples	is	drawn	from.

Associational	research.
A	second	type	of	descriptive	research	problem	might	be,	“What	events	or	phenomena	happen	together?”
Here,	researchers	take	their	descriptions	a	step	farther	and	ask	whether	variables	co-occur,	or	correlate,
with	one	another.	Several	instances	of	interest	in	co-occurrence	appear	in	our	synthesis	examples.	Our
synthesis	of	correlates	of	attitudes	toward	rape	focused	exclusively	on	simple	correlations	between
attitudes	and	other	characteristics	of	respondents.	The	synthesis	about	homework	also	looked	at	simple



correlations	between	the	amount	of	time	spent	on	homework	reported	by	students,	and	their
achievement.

Causal	research.
The	third	research	problem	seeks	an	explanation	for	the	event:	“What	events	cause	other	events	to
happen?”	In	this	case,	a	study	is	conducted	to	isolate	and	draw	a	direct	productive	link	between	one	event
(the	cause)	and	another	(the	effect).	What	constitutes	good	evidence	of	causal	production	is	a	complex
question	that	I	will	return	to	in	Chapter	5.	In	practice,	three	types	of	research	designs	are	used	most
often	to	help	make	causal	inferences.	I	will	call	the	first	modeling	research.	It	takes	correlational	research
a	step	farther	by	examining	co-occurrence	in	a	multivariate	framework	(Kline,	2011).	For	example,	the
synthesis	on	homework	looked	at	studies	that	built	complex	models	using	multiple	regression,	path
analysis,	or	structural	equation	modeling	to	describe	the	co-occurrence	of	many	variables,	one	being
homework,	and	academic	achievement.

The	second	approach	to	discovering	causes	is	called	quasi-experimental	research.	Here,	unlike	the
modeling	approach,	the	researcher	(or	some	other	external	agent)	controls	the	introduction	of	an
intervention	or	event	but	does	not	control	precisely	who	may	be	exposed	to	it	(May,	2012).	For	example,
in	the	synthesis	on	homework,	some	studies	looked	at	groups	of	children	whose	teachers	chose	whether
to	give	homework	rather	than	having	the	experimenter	randomly	assign	classes	to	conditions.	Then	the
researchers	might	try	to	match	children	in	different	classes	on	preexisting	differences.

A	unique	type	of	quasi-experiment	(often	called	preexperimental)	involves	a	pretest–posttest	design	in
which	participants	serve	as	their	own	control	by	being	compared	on	the	outcome	variable	before	and
after	the	intervention	is	introduced.	If	these	appear	frequently	in	a	research	literature,	it	is	important	to
remember	that	whereas	such	designs	equate	groups	on	lots	of	differences	(after	all,	they	are	the	same
people),	these	studies’	results	are	open	to	all	sorts	of	alternative	interpretations.	These	interpretations
are	related	to	the	passage	of	time,	including	changes	in	participants	that	would	have	occurred	regardless
of	the	introduction	of	the	intervention	(would	you	expect	children	to	get	better	at	reading	over	the	course
of	a	year	even	without	homework?),	as	well	as	other	interventions	or	general	historical	events	that
happened	during	the	time	between	the	pretest	and	the	posttest.

Finally,	in	experimental	research,	both	the	introduction	of	the	event	and	who	is	exposed	to	it	are
controlled	by	the	researchers	(or	other	external	agents),	who	then	leave	treatment	assignment	to	chance
(Christensen,	2012).	This	approach	minimizes	average	preexisting	differences	between	the	assigned
participants	in	each	group	so	that	we	can	be	most	confident	that	any	differences	between	participants	are
caused	by	the	variable	that	was	manipulated.	Of	course,	there	are	numerous	other	aspects	of	the	design
that	we	must	attend	to	for	a	strong	inference	about	causality	to	be	made,	but	for	our	current	purposes,
this	unique	feature	of	experimental	research	will	suffice,	until	Chapter	5.

In	the	synthesis	example	about	choice	and	motivation,	all	the	included	studies	involved	an	experimental
manipulation	of	choice	and	the	random	assignment	of	participants	to	choice	and	no-choice	conditions.
Also,	the	research	synthesis	on	aerobic	exercise	was	purposely	constrained	to	include	only	experimental
studies.

Within-Participant	or	Between-Participant	Processes?
Finally,	the	third	question	you	must	ask	about	the	posited	relationship	is,	“Does	the	problem	or	hypothesis
seek	to	understand	(a)	how	a	process	unfolds	within	an	individual	participant	over	time	or	(b)	what	is
associated	with,	or	explains	variation	between,	participants	or	groups	of	participants?”	All	the	designs	I
have	introduced	relate	to	the	latter,	the	differences	between	participants	on	a	characteristic	of	interest.
The	former	problem—the	problem	of	change	within	a	participant—would	best	be	studied	using	the
various	forms	of	single-case	or	time	series	designs,	research	designs	in	which	single	participants	are
tested	at	multiple	times,	typically	at	equal	time	intervals,	during	the	course	of	a	study.	As	with	between-
participants	differences,	within-participant	processes	can	be	studied	using	designs	that	are	purely
descriptive	(simple	time	series),	that	reveal	associations	between	two	processes	over	time	(concomitant
time	series),	or	that	assess	the	causal	impact	of	an	intervention	in	the	process	(interrupted	time	series).

Syntheses	of	time	series	research	are	still	rare	and	the	methodology	is	still	quite	new,	so	the	remainder	of
this	book	focuses	on	syntheses	of	between-participants	research.	All	our	synthesis	examples	involve
research	that	attempted	to	discover	relations	involving	variation	between	participants.	Still,	this	makes	it
no	less	important	to	ask	whether	the	research	question	concerns	processes	within	participants	or
differences	between	participants	and	to	understand	that	the	answer	will	dictate	what	research	designs
and	synthesis	methods	will	be	appropriate	for	answering	the	question.	If	you	are	interested	in	within-
participant	processes,	you	can	consult	Shadish	and	Rindskopf	(2007)	for	a	discussion	of	synthesis	of
single-case	research.

Simple	and	Complex	Relationships



The	problems	that	motivate	most	research	synthesists	begin	by	posing	questions	about	a	simple	two-
variable	relationship:	Does	choice	affect	motivation?	Does	homework	cause	improvements	in
achievement?	The	explanation	for	this	is	simple:	Bivariate	relationships	have	typically	been	tested	more
often	than	more-complex	relationships.	That	said,	it	is	rare,	if	not	unheard	of,	for	a	synthesis	to	have	only
one	operation	of	each	of	the	two	variables.	For	example,	in	the	choice	synthesis,	four	different	outcome
variables	were	collected	that	related	to	the	participants’	motivation	to	engage	in	the	task	(i.e.,	tasks
engaged	in	during	free	time,	enjoyment	or	liking	of	the	task,	interest	in	the	task,	willingness	to	engage	in
the	task	again)	and	were	tested	for	whether	the	different	measures	revealed	different	results.	In	the
aerobic	exercise	research	synthesis	dozens	of	outcome	variables	were	measured	and	then	classified	into
four	larger	domains	of	neurocognitive	functioning	for	purposes	of	analysis:	attention,	executive
functioning,	working	memory,	and	memory.

In	fact,	all	the	example	syntheses	examined	potential	influences	on	the	bivariate	relationships,	as	do
almost	all	syntheses,	including	not	just	third	variables	created	because	of	how	variables	were	defined	but
also	variations	created	by	differences	in	how	the	study	was	carried	out.	These	will	include	design
variations	(e.g.,	experiments	compared	to	quasi-experiments)	and	implementation	variations	(e.g.,	setting,
time).

Although	some	specific	hypotheses	about	three-variable	relationships—that	is,	interactions—in	the	social
sciences	have	generated	enough	interest	to	suggest	that	a	research	synthesis	would	be	informative,	for
the	vast	majority	of	topics	the	initial	problem	formulation	will	involve	a	two-variable	question.	Again,
however,	your	initial	undertaking	of	the	synthesis	to	establish	the	existence	of	a	bivariate	relationship
should	in	no	way	diminish	the	attention	you	pay	to	discovering	interacting	or	moderating	influences.
Indeed,	discovering	that	a	two-variable	relationship	exists	would	quite	often	be	viewed	as	a	trivial
contribution	by	the	research	community.	However,	if	bivariate	relationships	are	found	to	be	moderated	by
third	variables,	these	findings	are	viewed	as	a	step	forward	and	are	given	inferential	priority.	Even	when
an	interaction	is	the	primary	focus	of	a	synthesis,	the	search	for	higher-order	interactions	should
continue.	I	will	say	more	on	the	relationships	between	variables	in	Chapter	6,	when	I	discuss	how	main
effects	and	interactions	are	interpreted	in	research	synthesis.

Summary
In	sum	then,	in	addition	to	asking	whether	your	research	synthesis	has	(a)	provided	clear	conceptual
definitions	of	the	variables	of	interest	and	(b)	included	operations	that	are	truly	correspondent	to	those
conceptual	definitions,	you	must	also	ask,

Is	the	problem	stated	so	that	the	research	designs	and	evidence	needed	to	address	it	can	be	specified
clearly?

Figure	2.1	summarizes	the	differences	that	can	arise	between	research	syntheses	due	to	variations	in
how	concepts	are	defined,	operationalized,	and	related	to	one	another.	In	the	top	portion	of	the	figure	we
see	that	two	synthesists	might	use	conceptual	definitions	of	different	breadth.	The	definitions	will	affect
how	many	operations	will	be	deemed	relevant	to	the	concepts.	So,	a	synthesist	who	defines	homework	as
“academic	work	done	outside	school”	will	include	more	operations—for	example,	tutoring	would	fit	this
definition—than	a	synthesist	who	defines	homework	as	“tasks	assigned	by	teachers	meant	to	be	carried
out	during	nonschool	hours.”	Furthermore,	it	is	also	possible	that	regardless	of	the	breadth	of	the
concepts,	the	synthesists	might	differ	concerning	their	decisions	about	whether	certain	operations	are
relevant.	For	example,	one	synthesist	might	include	music	and	industrial	arts	grades	as	measures	of
achievement	whereas	another	might	not.

Figure	2.1	Differences	Between	Research	Syntheses	Due	to	Differences	in	Conceptual	Definitions,
Relevant	Operations,	and	Variable	Relationships



Also,	the	synthesists	might	differ	in	whether	they	are	interested	in	research	that	studies	an	association	or
research	that	studies	a	causal	link	between	the	variables.	This	will	influence	the	type	of	research	designs
that	are	deemed	relevant	and/or	how	the	results	of	research	using	different	designs	are	interpreted	with
regard	to	their	ability	to	shed	light	on	the	relation	of	interest.	So,	synthesists	who	ask	the	question,	“Is
doing	homework	related	to	achievement?”	would	include	both	correlational	and	experimental	research,
while	synthesists	who	ask	the	question,	“Does	homework	cause	improved	achievement?”	might	restrict
their	synthesis	to	only	experiments	using	random	assignment	to	conditions	and	perhaps	quasi-
experiments.	Or,	if	correlational	research	is	included,	it	would	need	to	be	carefully	interpreted	as	less
than	optimal	for	answering	this	question	(a	concern	we	will	return	to	in	Chapter	5).

And	finally,	it	is	important	to	remember	that	some	variables	in	a	synthesis	can	be	relatively	narrowly
defined,	whereas	others	are	broadly	defined.	For	example,	in	our	synthesis	concerning	attitudes	toward
rape,	the	term	rape	was	defined	relatively	narrowly	as	sexual	intercourse	between	a	man	and	a	woman
without	the	woman’s	consent.	Still,	our	literature	search	uncovered	17	different	measures	of	rape
attitudes,	but	only	5	were	used	with	much	frequency	(e.g.,	Attitude	Toward	Rape	Scale,	Rape	Myth
Acceptance).	On	the	other	hand,	the	concept	used	to	define	predictors	of	rape	attitudes,	“individual
differences,”	was	extremely	broad.	We	identified	74	distinct	individual	difference	variables	that	could	be
clustered	into	broader	groupings	(but	narrower	than	“individual	differences”)	consisting	of	demographic,
cognitive,	experiential,	affective,	and	personality	measures.	As	noted	previously,	much	of	the	creative
challenge	and	reward	in	doing	research	synthesis	lies	in	identifying	groupings	like	these	and	making
sense	of	their	different	relationships	to	other	variables.

Judging	the	Conceptual	Relevance	of	Studies
It	can	always	be	the	case	that	researchers	disagree	about	the	conceptual	definition	of	a	variable	or	about
the	operations	relevant	to	it.	In	fact,	many	disputes	surrounding	research	syntheses	revolve	around
differences	in	what	studies	were	included	and	excluded	based	on	their	relevance.	Readers	who	are
knowledgeable	about	the	research	area	will	say,	“Hey,	how	come	this	study	wasn’t	included?”	or	“How
come	this	study	was?”	For	example,	many	homework	scholars	would	have	objected	if	our	research
synthesis	included	studies	that	involved	students	receiving	tutoring	at	the	recommendation	of	the	teacher
even	though	including	them	might	have	met	a	broad	conceptual	definition	of	homework.	Likely,	had
tutoring	studies	been	included,	these	scholars	would	have	suggested	that	the	definition	of	homework,	as
most	people	understand	it,	involves	assignments	given	to	the	entire	class	of	students.	They	would	have
argued	that	the	definition	of	homework	needed	to	be	more	precise.

Beyond	the	breadth	or	narrowness	of	the	conceptual	definition,	some	research	has	examined	other
contextual	factors	that	might	affect	whether	a	study	is	deemed	relevant	to	a	research	problem.	For
example,	judgments	about	the	relevance	of	studies	to	a	literature	search	appear	to	be	related	to	the
searcher’s	open-mindedness	and	expertise	in	the	area	(Davidson,	1977),	whether	the	decision	is	based	on
titles	or	abstracts	(Cooper	&	Ribble,	1989),	and	even	the	amount	of	time	the	searcher	has	for	making
relevance	decisions	(Cuadra	&	Katter,	1967).	Thus,	while	the	conceptual	definition	and	level	of
abstractness	that	synthesists	choose	for	a	problem	are	certainly	two	influences	on	which	studies	are
deemed	relevant,	a	multitude	of	other	factors	also	affect	this	screening	of	studies.

You	should	begin	your	literature	search	with	the	broadest	conceptual	definition	in	mind.	In	determining
the	acceptability	of	operations	for	inclusion	within	the	broad	concept,	you	should	remain	as	open	in	your



interpretation	as	possible.	At	later	stages	of	the	synthesis,	notably	during	data	evaluation,	it	is	possible	to
exclude	particular	operations	due	to	their	lack	of	relevance.	However,	in	the	problem	formulation	and
literature	search	stages,	decisions	about	the	relevance	of	studies	should	err	on	the	side	of	being	overly
inclusive,	just	as	primary	researchers	collect	some	data	that	might	not	later	be	used	in	analysis.	It	is	very
distressing	to	find	out	after	studies	have	been	retrieved	and	catalogued	that	available	pieces	of	the	puzzle
were	passed	over	and	a	new	search	must	be	conducted.	An	initially	broad	conceptual	search	also	will	help
you	think	more	carefully	about	the	boundaries	of	your	concepts,	leading	to	a	more	precise	definition	once
the	search	is	completed.	So,	if	studies	of	tutoring	are	retrieved	because	an	expansive	interpretation	of	the
concept	of	homework	is	used	(“academic	tasks	carried	out	during	nonschool	hours”),	and	it	is	later
decided	that	these	ought	not	be	included,	it	could	lead	to	a	refinement	of	the	definition	(“tasks	assigned
by	teachers	to	all	students”).

It	is	also	good	practice	to	have	the	initial	decision	about	the	potential	relevance	of	a	study,	sometimes
called	initial	or	prescreening,	made	by	more	than	one	person.	Here,	you	give	the	screeners	the
conceptual	definition	of	variables	and	examples	of	relevant	operations	and	have	them	examine	the
documents	retrieved	by	your	literature	search.	The	purpose	of	having	multiple	screeners	is	not	only	to	see
if	the	conceptual	definitions	lead	to	agreement	among	screeners,	but	also	to	flag	for	further	screening
any	study	that	is	deemed	potentially	relevant	by	any	one	screener.	Often,	the	initial	decision	about
relevance	will	be	made	on	limited	information	about	the	study,	such	as	the	study’s	abstract.	When	this	is
the	case,	it	is	even	more	important	to	have	at	least	two	screeners	judge	each	study	and	take	a	second	look
at	studies	even	if	just	one	screener	thought	it	might	be	relevant	to	do	so.

Table	2.1	provides	an	example	of	a	screening	sheet	for	coders	to	use	to	report	their	initial	decision	about
whether	a	document	is	relevant	to	a	search.	The	most	critical	code	is	the	seventh	which	places	each
document	into	one	of	four	categories	depending	on	what	the	screener	thinks	it	contains.	Note	that	in
addition	to	categories	that	identify	documents	as	possibly	containing	data	relevant	to	the	search,	the
initial	screening	question	includes	a	category	for	documents	that	might	not	include	data	for	a	meta-
analysis	but	that	might	provide	other	important	information	or	insights	about	the	topic,	perhaps	for	use	in
the	introduction	or	discussion	of	the	synthesis	results.	For	example	an	article	that	does	not	contain
empirical	evidence	but	does	include	suggestions	about	possible	influences	on	the	impact	of	the
intervention	on	adult	activity	would	by	classified	as	a	background	article.



The	rest	of	the	information	on	the	sheet	relates	to	characteristics	of	the	document	and	its	producers.	This
information	is	typically	found	in	the	document	records	contained	in	most	computerized	reference
databases,	so	it	typically	is	not	necessary	for	the	screener	to	examine	the	full	document	to	find	it.	Some	of
these	codes	might	be	used	to	make	decisions	about	whether	to	include	a	study.	For	example,	the	year	of
the	report	might	be	used	if	the	decision	is	made	to	limit	the	synthesis	only	to	studies	appearing	after	a
certain	date.	When	a	literature	search	requires	the	screening	of	large	numbers	of	documents	(a	search	of
the	ERIC	database	for	the	mention	of	the	term	homework	reveals	more	than	2,700	documents	since	1996)
the	initial	screening	will	occur	at	this	level.	And,	of	course,	the	questions	in	an	initial	screening	might	be
altered	depending	on	their	relevance	to	a	particular	search.

Study-Generated	and	Synthesis-Generated	Evidence
I	have	pointed	out	that	most	research	syntheses	focus	on	main-effect	questions	but	then	also	test	for
moderators	by	grouping	studies	according	to	differences	in	the	way	the	research	was	carried	out.	In
essence,	then,	these	moderator	analyses	are	testing	for	interaction	effects—that	is,	they	ask	whether	the
main-effect	relationship	is	different	depending	on	the	level	or	categories	of	a	third	variable,	in	this	case	a
characteristic	of	the	study.	This	leads	us	to	consider	an	important	distinction	between	the	types	of
evidence	contained	in	research	syntheses.

There	are	two	different	sources	of	evidence	about	relationships	contained	in	research	syntheses.	The	first
type	is	called	study-generated	evidence.	Study-generated	evidence	is	present	when	a	single	study



contains	results	that	directly	test	the	relation	being	considered.	Research	syntheses	also	contain	evidence
that	does	not	come	from	individual	studies,	but	rather	from	the	variations	in	procedures	across	studies.
This	type	of	evidence,	called	synthesis-generated	evidence,	is	present	when	the	results	of	studies	using
different	procedures	to	test	the	same	hypothesis	are	compared	to	one	another.

There	is	one	critical	distinction	between	study-generated	and	synthesis-generated	evidence:	Only	study-
generated	evidence	based	on	experimental	research	allows	the	synthesist	to	make	statements	concerning
causality.	An	example	will	clarify	the	point.	With	regard	to	choice	and	motivation	studies,	suppose	we
were	interested	in	whether	the	number	of	options	a	participant	is	given	to	choose	among	influences	the
effect	of	choice	on	motivation.	Suppose	also	that	16	studies	were	found	that	directly	assessed	the	impact
of	number	of	options	by	randomly	assigning	participants	to	experimental	conditions,	one	in	which
participants	chose	between	only	two	alternatives	and	another	in	which	more	than	two	alternatives	were
available.	The	accumulated	results	of	these	studies	could	then	be	interpreted	as	supporting	or	not
supporting	the	idea	that	the	number	of	choice	options	causes	increases	or	decreases	in	motivation.	Now,
assume	instead	that	we	uncovered	eight	studies	that	compared	only	a	two-option	choice	condition	to	a	no-
choice	control	group,	and	eight	other	studies	that	compared	a	multiple-option	(more	than	two)	choice
condition	to	a	no-choice	control	group.	If	this	synthesis-generated	evidence	revealed	larger	effects	of
choice	on	motivation	when	more	(or	fewer)	options	were	given,	then	we	could	infer	an	association	but	not
a	causal	relation	between	the	number	of	options	and	motivation.

Why	is	this	the	case?	Causal	direction	is	not	the	problem	with	synthesis-generated	evidence.	It	would	be
foolish	to	argue	that	the	amount	of	motivation	exhibited	by	participants	caused	the	experimenters’
decision	about	the	number	of	options.	However,	still	problematic	is	another	ingredient	of	causality—the
absence	of	potential	third	variables	causing	the	relationship.	A	multitude	of	third	variables	are	potentially
confounded	with	the	original	experimenters’	decisions	about	how	many	choice	options	to	give
participants.	For	instance,	the	participants	in	multiple-option	studies	may	have	been	more	likely	to	be
adults	while	two-option	studies	were	more	likely	to	be	conducted	with	children.	Age	might	be	the	true
cause	(could	children	be	thrilled	to	get	choices	while	adults	are	unmoved	by	them?).

Synthesis-generated	evidence	cannot	legitimately	rule	out	as	possible	true	causes	any	other	variables
confounded	with	the	study	characteristic	of	interest.	This	is	because	the	synthesists	did	not	randomly
assign	the	number	of	choice	options	to	experiments.	It	is	the	ability	to	employ	random	assignment	of
participants	that	allows	primary	researchers	to	assume	that	third	variables	are	represented	equally	in	the
experimental	conditions.	So,	a	synthesis	encompassing	studies	that	all	compared	varying	choice-option
conditions	to	a	no-choice	control	group	can	make	causal	statements	about	the	effect	of	choice	per	se	but
not	about	the	effect	of	the	number	of	options	on	the	effect	of	choice.	Here,	an	association	can	only	be
claimed.

Summary
It	is	important	for	synthesists	to	keep	the	distinction	between	study-generated	and	synthesis-generated
evidence	in	mind.	Only	evidence	coming	from	experimental	manipulations	within	a	single	study	can
support	assertions	concerning	causality.	However,	the	lesser	strength	of	synthesis-generated	evidence
with	regard	to	causal	inferences	does	not	mean	this	evidence	should	be	ignored.	The	use	of	synthesis-
generated	evidence	allows	you	to	test	relations	that	may	have	never	been	examined	by	primary
researchers.	For	example,	it	may	be	the	case	that	no	previous	primary	study	has	examined	whether	the
relation	between	homework	and	achievement	is	different	for	assignments	of	different	length,	or	whether
different	types	of	aerobic	interventions	differ	in	their	effects	on	subsequent	cognitive	functioning.	By
searching	across	studies	for	variations	in	assignment	length	or	intervention	type	and	then	relating	this	to
the	effect	of	homework	on	achievement	or	interventions	on	memory	synthesists	can	produce	the	first
evidence	about	these	potentially	critical	moderating	variables.	Even	though	this	evidence	is	equivocal,	it
is	a	major	contribution	of	research	synthesis	and	a	source	of	potential	hypotheses	for	future	primary
research.

Arguing	for	the	Value	of	the	Synthesis
All	research	syntheses	should	be	placed	in	a	theoretical,	historical,	and/or	practical	context.	Why	are
attitudes	toward	rape	important?	Do	theories	predict	how	and	why	particular	individual	differences	will
relate	to	rape	attitudes?	Are	there	conflicting	predictions	associated	with	different	theories?	Why	do	older
adults	need	aerobic	activity?	Where	did	the	idea	for	activity	interventions	come	from?	Are	intervention
components	grounded	in	theory	or	in	practical	experience?	Are	there	debates	surrounding	the	utility	of
exercise	programs?

Contextualizing	the	problem	of	a	research	synthesis	does	more	than	explain	why	a	topic	is	important.
Providing	a	context	for	the	problem	also	provides	the	rationale	for	the	search	for	moderators	of	the
overall	findings.	It	is	an	important	aid	in	identifying	variables	that	you	might	examine	for	their	influence
on	outcomes.	For	example,	self-determination	theory	proposes	that	having	a	choice	will	improve	intrinsic
motivation	to	engage	in	a	task	but	providing	rewards	will	undermine	future	task	motivation.	This	suggests



that	studies	of	choice	that	also	provide	rewards	might	produce	different	results	from	studies	with	no
rewards.	The	presence	of	rewards,	then,	should	be	examined	as	a	potential	moderator	of	the	overall
relationship.

Also,	many	social	interventions,	such	as	assigning	homework,	have	claims	associated	with	them	that
suggest	they	will	influence	more	than	one	outcome	variable.	For	example,	homework	proponents	provide
a	list	of	claimed	positive	effects	that	include	academic	(e.g.,	improved	study	skills)	and	nonacademic
outcomes	(e.g.,	better	time	management).	Likewise,	homework	opponents	provide	their	own	list	of
possible	negative	effects	(e.g.,	less	time	for	other	activities	that	promote	positive	life	skills).	It	is
important	that	research	synthesists	examining	the	effects	of	an	intervention	provide	a	list	of	possible
intervention	effects,	both	positive	and	negative,	that	have	been	proposed	as	outcomes.	These	effects
might	have	been	offered	by	theorists,	researchers,	practitioners,	and	pundits.

Again,	both	quantitative	and	qualitative	research	can	be	used	to	place	the	research	problem	in	a
meaningful	context.	Narrative	or	qualitative	descriptions	of	relevant	events	can	be	used	to	discover	the
salient	features	of	the	problem	at	hand.	These	can	be	the	source	of	important	queries	for	research
synthesists	to	ask	of	the	quantitative	evidence.	Quantitative	surveys	also	can	answer	specific	questions
across	a	broader	array	of	problem	instantiations.	In	addition	to	establishing	the	importance	of	the
problem,	surveys	can	answer	questions	such	as,	“How	available	are	aerobic	exercise	intervention
programs	for	adults?”	and	“What	are	the	characteristics	of	participants	in	these	intervention	programs?”

If	a	Synthesis	Already	Exists,	Why	Is	a	New	One	Needed?
Sometimes,	the	value	of	a	synthesis	is	easy	to	establish:	A	lot	of	past	research	has	been	conducted	and	it
is	yet	to	be	accumulated,	summarized,	and	integrated.	However,	if	a	topic	has	a	long	history	of	research,
it	is	not	surprising	to	find	that	previous	attempts	to	summarize	it	already	exist.	Obviously,	these	efforts
need	to	be	scrutinized	carefully	before	the	new	synthesis	is	undertaken.	Past	syntheses	can	help	establish
the	necessity	for	a	new	synthesis.	This	assessment	process	is	much	like	that	used	in	primary	research
before	undertaking	a	new	study.

There	are	several	things	you	can	look	for	in	past	syntheses	that	will	help	your	new	effort.	First,	previous
syntheses	can	be	used,	along	with	the	other	background	documents	you	find,	to	identify	the	positions	of
other	scholars	in	the	field.	In	particular,	the	past	syntheses	can	be	used	to	determine	whether	conflicting
conclusions	exist	about	what	the	evidence	says	and,	perhaps,	what	has	caused	the	conflict.

Second,	an	examination	of	past	syntheses	can	assess	the	earlier	efforts’	completeness	and	validity.	For
example,	the	synthesis	on	aerobic	exercise	interventions	found	one	narrative	review	and	four	meta-
analyses	of	past	research.	However,	these	past	efforts	disagreed	about	the	magnitude	of	improvement	on
neurocognitive	functioning	that	resulted	from	the	interventions.

Past	syntheses	also	can	be	an	important	aid	in	identifying	interacting	variables	that	you	might	wish	to
examine.	Rather	than	restart	the	compilation	of	potential	moderating	variables,	previous	synthesists
(along	with	primary	researchers,	both	quantitative	and	qualitative)	will	undoubtedly	offer	many
suggestions	based	on	their	own	research	and	reading	of	the	literature.	If	more	than	one	synthesis	of	an
area	has	been	conducted,	the	new	effort	will	be	able	to	incorporate	all	the	suggestions.

Finally,	past	syntheses	allow	you	to	begin	the	compilation	of	a	relevant	bibliography.	Most	syntheses	will
have	fairly	lengthy	bibliographies.	If	more	than	one	synthesis	exists,	their	citations	will	overlap
somewhat,	but	not	perfectly.	Along	with	other	techniques	described	in	the	next	chapter,	the	research
cited	in	past	syntheses	provides	an	excellent	place	for	you	to	start	the	literature	search.

The	Effects	of	Context	on	Synthesis	Outcomes
Differences	in	how	a	problem	is	placed	in	its	theoretical	or	practical	context	affects	the	outcomes	of
syntheses	by	leading	to	differences	in	the	way	study	operations	are	treated	after	the	relevant	literature
has	been	identified.	Synthesists	can	vary	in	the	attention	they	pay	to	theoretical	and	practical	distinctions
in	the	literature.	Thus,	two	research	syntheses	conducted	using	identical	conceptual	definitions	and	the
same	set	of	studies	can	still	reach	decidedly	different	conclusions	if	one	synthesis	examined	information
about	theoretical	and	practical	distinctions	in	studies	to	uncover	moderating	relationships	that	the	other
synthesis	did	not	examine.	For	example,	one	synthesis	might	discover	that	the	effect	of	homework	on
achievement	was	associated	with	the	grade	level	of	students,	whereas	another	synthesis	never	addresses
the	question.	Thus,	to	evaluate	whether	(a)	the	importance	of	the	problem	has	been	established	and	(b)	a
list	of	important	potential	moderators	of	findings	has	been	identified,	the	next	question	to	ask	about	your
research	syntheses	is,

Is	the	problem	placed	in	a	meaningful	theoretical,historical,	and/or	practical	context?



Exercises
1.	 Identify	two	research	syntheses	that	claim	to	relate	to	the	same	or	similar	hypotheses.	Find	the	conceptual	definitions

used	in	each.	Describe	how	the	definitions	differ,	if	they	do.	Which	synthesis	employs	the	broader	conceptual
definition?

2.	 List	the	operational	characteristics	of	studies	described	as	the	inclusion	and	exclusion	criteria	in	each	of	the	two
syntheses.	How	do	they	differ?

3.	 List	the	studies	deemed	relevant	in	each	synthesis.	Are	there	studies	that	are	included	in	one	synthesis	and	not	the
other?	If	so,	why	did	this	happen?

4.	 What	type	of	relationship	is	posited	as	existing	between	the	variables	of	interest	in	the	two	syntheses?	What	types	of
research	designs	are	covered	in	the	syntheses?	Do	the	posited	relationships	and	covered	designs	correspond?	Why?

5.	 What	rationales	are	given	for	the	two	research	syntheses?	Do	they	differ?

Notes
1.	Here,	I	use	the	term	participant	in	the	broader	sense:	the	participant	might	be	an	individual	person	or
animal,	or	a	group	of	such	units.	For	ease	of	exposition,	I	will	continue	to	use	the	term	participant	in	place
of	the	more	cumbersome	term	units	under	study.

2.	The	problem	of	nonstandard	measurements	is	lessened	when	study	characteristics	are	tested	as	third
variables	because	the	bivariate	relationships	within	the	studies	can	be	transformed	into	standardized
effect	size	estimates,	thus	controlling	for	different	scales	(see	Chapter	6).



3	Step	2	Searching	the	Literature

What	procedures	should	be	used	to	find	relevant	research?

Primary	Functions	Served	in	the	Synthesis
1.	 To	identify	places	to	find	relevant	research	(e.g.,	reference	databases,	journals)
2.	 To	identify	terms	used	to	search	for	relevant	research	in	reference	databases

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
1.	 Variation	in	searched	sources	might	lead	to	systematic	differences	in	the	retrieved	research.

Questions	to	Ask	When	Evaluating	the	Literature	Search	in	a	Research
Synthesis

1.	 Were	complementary	searching	strategies	used	to	find	relevant	studies?
2.	 Were	proper	and	exhaustive	terms	used	in	searches	and	queries	of	reference	databases	and	research	registries?

This	chapter	describes
Objectives	of	a	literature	search
Methods	for	locating	studies	relevant	to	a	synthesis	topic
Researcher-to-researcher,	quality-controlled,	and	secondary	channels	for	obtaining	research	reports
How	research	enters	different	channels
How	searchers	access	different	channels
What	biases	may	be	present	in	the	kinds	of	information	contained	in	different	channels
Problems	encountered	in	retrieving	studies

In	primary	social	science	research,	participants	are	recruited	into	studies	through	subject	pools,
advertisements,	Internet	websites,	schools,	doctors’	offices,	and	so	on.	In	research	synthesis,	the	studies
of	interest	are	found	by	conducting	a	search	for	reports	describing	past	relevant	research.	Regardless	of
whether	social	scientists	are	collecting	new	data	or	synthesizing	results	of	previous	studies,	the	major
decision	they	make	when	finding	relevant	sources	of	data	involves	defining	the	target	population	that	will
be	the	referent	of	the	research	(Fowler,	2014).	In	primary	research,	the	target	population	includes	those
individuals	or	groups	that	the	researcher	hopes	to	represent	in	the	study.	In	research	synthesis,	the	target
population	includes	all	the	studies	that	test	the	hypothesis	or	address	the	problem.

The	sample	frame	of	an	investigation	in	the	case	of	primary	research	includes	those	individuals	or	groups
the	researcher	pragmatically	could	obtain.	In	the	case	of	research	synthesis,	it	includes	obtainable	study
reports.	In	most	instances,	researchers	will	not	be	able	to	access	all	of	a	target	population’s	elements.	To
do	so	would	be	too	costly	because	some	people	(or	documents)	are	hard	to	find	or	refuse	to	cooperate.

Population	Distinctions	in	Social	Science	Research
Both	primary	research	and	research	synthesis	involve	specifying	target	populations	and	sampling	frames.
In	addition,	both	types	of	investigation	require	the	researcher	to	consider	how	the	target	population	and
sampling	frame	may	differ	from	one	another.	The	trustworthiness	of	any	claims	about	the	target
population	will	be	compromised	if	the	elements	in	the	sampling	frame	differ	in	systematic	ways	from	the
target	population.	Because	it	is	easier	to	alter	the	target	of	an	investigation	than	it	is	to	locate	hard-to-
find	people	or	studies,	both	primary	researchers	and	research	synthesists	may	find	they	need	to	respecify
their	target	population	when	an	inquiry	nears	completion.

The	most	general	target	population	for	social	and	behavioral	science	research	could	be	characterized
roughly	as	“all	human	beings,”	either	as	individuals	or	in	groups.	Most	topics,	of	course,	delineate	the
elements	to	be	less	ambitious,	such	as	“all	students”	in	a	study	of	the	effects	of	homework	or	“all	adults
over	50	years	of	age”	in	a	study	of	the	effects	of	exercise	interventions.

Sampling	frames	in	social	and	behavioral	science	research	typically	are	much	more	restricted	than
targets.	So,	participants	in	an	exercise	intervention	might	all	be	drawn	from	a	similar	geographic	area.
Most	researchers	are	aware	of	the	gap	between	the	diversity	of	participants	they	hope	their	research
results	refer	to	and	those	people	actually	available	to	them.	For	this	reason,	they	discuss	limits	on
generalizability	in	their	discussion	of	the	study’s	results.

As	I	noted	in	Chapter	1,	research	syntheses	involve	two	targets.	First,	synthesists	hope	their	work	will
cover	all	previous	research	on	the	problem.	Synthesists	can	exert	some	control	over	reaching	this	goal	by



how	they	conduct	their	literature	search—that	is,	through	their	choices	of	information	sources.	How	this
is	done	is	the	focus	of	this	chapter.	Just	as	different	sampling	methods	in	primary	research	can	lead	to
differences	in	who	is	sampled	(e.g.,	phone	surveys	and	mail	surveys	reach	different	people),	different
literature-searching	techniques	lead	to	different	samples	of	studies.	Likewise,	just	as	it	is	more	difficult	to
find	and	sample	some	people	than	others,	it	is	also	more	difficult	to	find	some	studies	than	others.

In	addition	to	wanting	to	cover	all	previous	research,	synthesists	also	want	the	results	of	their	work	to
pertain	to	the	target	population	of	people	(or	other	units)	that	are	relevant	to	the	topic.	When	we
conducted	our	synthesis	of	homework	research,	we	hoped	that	students	at	grade	levels	kindergarten
through	12,	not	just	high	school	students,	for	example,	would	be	represented	in	past	studies.	Our	ability
to	meet	our	goal	was	constrained	by	the	types	of	students	sampled	by	primary	researchers.	If	first	and
second	graders	were	not	included	in	previous	homework	studies,	they	will	not	be	represented	in	a
synthesis	of	homework	research.	Thus,	research	synthesis	involves	a	process	of	sampling	samples.	The
primary	research	includes	samples	of	individuals	or	groups,	and	the	synthesist	retrieves	primary
research.	This	process	is	something	akin	to	cluster	sampling,	with	the	clusters	distinguishing	people
according	to	the	research	projects	in	which	they	participated.

Also	different	from	primary	research,	synthesists	typically	are	not	trying	to	draw	representative	samples
of	studies	from	the	literature.	Generally,	they	attempt	to	retrieve	an	entire	population	of	studies.	The
formidable	goal	of	finding	all	studies	is	rarely	achieved,	but	it	is	certainly	the	desired	objective.

Methods	for	Locating	Studies
How	do	you	go	about	finding	studies	relevant	to	a	topic?	There	are	numerous	techniques	scientists	use	to
share	information	with	one	another.	These	techniques	have	undergone	enormous	changes	in	recent	years.
In	fact,	it	is	safe	to	say	that	the	ways	scientists	transmit	their	work	to	one	another	has	changed	more	in
the	past	three	decades	than	it	did	in	the	preceding	three	centuries,	dating	back	to	the	late	17th	century,
when	scholarly	journals	first	appeared.	The	change	is	primarily	due	to	the	use	of	computers	and	the
Internet	to	facilitate	human	communication.

The	Fate	of	Studies	From	Initiation	to	Publication
A	description	of	the	many	mechanisms	that	searchers	can	use	to	find	studies	will	be	most	instructive	if	we
begin	with	an	account	of	the	alternative	possible	fates	of	studies	once	they	have	been	proposed.	My
colleagues	and	I	(Cooper,	DeNeve,	&	Charlton,	1997)	conducted	a	survey	of	33	researchers	who	had
several	years	earlier	proposed	159	studies	to	their	university’s	institutional	review	board.	The	survey
asked	the	researchers	how	far	along	each	of	the	studies	had	gone	in	the	process	from	initiation	to
publication.	Figure	3.1	summarizes	their	responses.	Of	the	159	studies,	4	were	never	begun,	4	were
begun	but	data	collection	was	never	completed,	and	30	were	completed	but	the	data	were	never
analyzed.	From	the	point	of	view	of	research	synthesists,	these	38	studies	are	of	little	interest	because	a
hypothesis	was	never	tested.	However,	once	a	study’s	data	have	been	analyzed	(as	happened	for	about
76%	of	the	proposed	studies)	then	the	result	is	of	interest	because	it	represents	a	test	of	the	study’s
hypotheses.	Not	only	does	the	study	now	include	information	on	the	truth	or	falsity	of	the	hypothesis	but
what	happens	to	the	study	next	may	be	influenced	by	what	the	data	revealed.	For	example,	Figure	3.1
indicates	that	about	13%	of	studies	with	analyzed	data	produced	no	written	report;	the	researchers	gave
several	reasons	why	this	was	the	case.	Some	of	these	reasons	seem	related	to	the	outcome	itself,
especially	the	reason	that	the	results	were	not	interesting	and/or	not	statistically	significant.	This	means
uninteresting	and	nonsignificant	results	may	be	harder	to	find.	Next,	we	see	in	Figure	3.1	that	only	about
half	of	the	written	summaries	of	research	were	prepared	for	a	journal	article,	book	chapter,	or	book.	And
finally,	of	these	somewhere	between	75%	and	84%	eventually	found	their	way	into	print.

As	we	examine	the	different	retrieval	techniques	used	by	people	searching	for	studies,	it	will	be	important
to	keep	in	mind	that	the	difficulty	in	finding	research,	and	the	value	of	different	searching	techniques,	will
be	a	function	of	how	far	along	the	study	went—or	currently	is,	for	recently	completed	work—in	the
process	from	data	analysis	to	publication,	as	outlined	in	Figure	3.1.	For	example,	to	anticipate	the
discussion	that	follows,	it	is	clear	that	studies	that	had	data	analyzed	but	never	were	written	up	will	be
retrievable	only	through	direct	contact	with	the	researchers.	Studies	that	appear	in	journals	will	be	easier
to	find,	but	may	overrepresent	significant	and/or	novel	findings.

Figure	3.1	Flow	Diagram	of	the	Fate	of	Research	From	Institutional	Review	Board	Approval	to
Publication



SOURCE:	From	“Finding	the	Missing	Science:	The	Fate	of	Studies	Submitted	for	Review	by	a	Human
Subjects	Committee,”	by	H.	Cooper,	K.	DeNeve,	&	K.	Charlton,	1997,	Psychological	Methods,	2,	pp.
448–449.	Copyright	2001	by	the	American	Psychological	Association.

Some	Ways	Searching	Channels	Differ
The	section	that	follows	will	present	descriptions	of	the	major	techniques	you	can	use	to	find	research.	I
will	attempt	to	evaluate	the	kind	of	information	found	using	each	technique	by	comparing	search	results
that	used	it	exclusively	to	that	of	the	target	population	“all	relevant	research,”	or,	put	differently,	“all
relevant	studies	for	which	data	were	analyzed.”	Regrettably,	there	are	only	limited	empirical	data	on
differences	in	scientific	information	obtained	using	different	search	techniques,	so	many	of	my
comparisons	will	involve	some	speculation	on	my	part.	The	problem	is	complicated	further	by	the	fact	that
the	effect	of	a	searching	technique’s	characteristics	on	its	outcomes	probably	varies	from	topic	to	topic.

Also,	the	proliferation	of	ways	to	share	information	makes	it	increasingly	difficult	to	find	just	a	few
descriptors	that	help	us	think	about	how	the	search	techniques	differ	and	relate	to	one	another.
Mechanisms	for	communication	have	arisen	in	a	haphazard	fashion,	so	no	descriptive	dimension	perfectly
captures	all	their	important	features.	Still,	there	are	several	features	that	are	useful	in	describing	the
different	search	techniques.	One	important	feature	that	distinguishes	scientific	communication
techniques	relates	to	how	research	gets	into	the	channel.	Channels	can	have	relatively	open	or	restricted
rules	for	entry.	Open	entry	permits	the	primary	researcher	(the	person	who	wants	to	put	something	in	the
channel)	to	enter	the	channel	directly	and	place	his	or	her	work	into	its	collection	of	information.
Restricted	entry	requires	primary	researchers	to	meet	the	requirements	of	a	third	party—some	person	or
entity	between	the	researcher	and	the	person	searching	for	information—before	their	work	can	be
included.	The	most	important	of	these	requirements	is	the	use	of	peer	review	in	scientific	journals	to
ensure	that	research	meets	certain	standards	of	relevance,	quality,	and	importance.	In	fact,	all	channels
have	some	restrictions	on	entries,	but	the	type	and	stringency	differ	from	channel	to	channel.	It	is	these
restrictions	that	most	directly	affect	how	the	research	in	the	channel	differs	from	all	relevant	research.

A	second	important	feature	of	search	techniques	concerns	how	searchers	obtain	information	from	the
channel.	Channels	have	more	or	less	open	or	restricted	requirements	regarding	how	to	access	their
content.	A	channel	is	more	restricted	if	it	requires	the	searcher	(the	person	seeking	information	from	the
channel)	to	identify	very	specifically	what	or	whose	documents	they	want.	A	channel	is	more	open	if	the
searchers	can	be	more	broad	or	general	in	their	request	for	information.	These	access	requirements	also
can	influence	the	type	of	research	a	searcher	will	find	in	a	channel.

The	importance	of	these	distinctions	will	become	clear	as	I	describe	how	they	relate	to	specific	search
techniques.	For	purposes	of	exposition,	I	have	grouped	the	techniques	under	the	headings	“Researcher-
to-Researcher	Channels,”	“Quality-Controlled	Channels,”	and	“Secondary	Channels.”

Researcher-to-Researcher	Channels



Researcher-to-researcher	techniques	for	obtaining	study	reports	are	characterized	by	the	fact	that
searchers	are	attempting	to	locate	investigators	who	may	or	may	not	have	relevant	studies	rather	than	to
locate	the	reports	themselves.	There	are	no	formal	restrictions	on	the	kinds	of	requests	that	can	be	made
through	such	contact	or	who	can	exchange	information.	The	request	to	the	researcher	can	be	very
general	(e.g.,	“Have	you	conducted	or	are	you	aware	of	any	studies	involving	aerobic	exercise?”)	or	very
specific	(e.g.,	“Have	you	conducted	or	are	you	aware	of	any	studies	involving	aerobic	exercise	as
interventions	on	older	adults	that	measured	cognitive	performance?”).	In	all	but	one	case,	there	is	no
third	party	that	mediates	the	exchange	of	information	between	the	searcher	and	researcher.	The	principal
forms	of	researcher-to-researcher	communication	involve	personal	contacts,	mass	solicitations,
traditional	invisible	colleges,	and	electronic	invisible	colleges.	The	distinctions	between	these	forms	of
communication	are	described	in	the	following	paragraphs	and	summarized	in	Table	3.1.

Personal	Contact
The	first	information	available	to	searchers	is,	of	course,	their	own	research.	Before	anyone	else	sees
research	results,	the	primary	investigators	see	it	themselves.	So,	we	began	our	search	for	studies	about
the	effects	of	homework	on	achievement	by	including	our	own	studies	that	were	relevant	to	the	issue.

Although	this	source	may	seem	almost	too	obvious	to	mention,	it	is	a	critical	one.	It	is	important	for
research	synthesists	to	keep	the	role	of	their	own	work	in	proper	perspective.	Primary	research	that
synthesists	personally	have	conducted	has	a	strong	impact	on	how	they	interpret	the	research	literature



as	a	whole	(Cooper,	1986).	Typically,	we	expect	that	all	research	should	come	to	the	same	conclusions	as
our	studies.	However,	any	researcher’s	own	studies	on	a	topic	could	differ	markedly	on	a	number	of
important	dimensions	from	other	research,	with	many	of	the	differences	in	how	research	was	conducted,
possibly	influencing	results.	Each	researcher	is	likely	to	repeat	some	of	the	same	operations	across
studies,	using	only	a	few	measurement	devices	and/or	instructions	to	participants.	For	example,	studies	of
homework	that	one	researcher	conducts	might	exclusively	use	students’	class	grades	as	the	measure	of
achievement.	Other	researchers	might	use	textbook	unit	tests	or	standardized	tests	but	not	class	grades.
Also,	participants	in	one	researcher’s	studies	might	be	drawn	from	the	same	institutions	(e.g.,	a
researcher	always	uses	students	in	a	nearby	school	district)	and	geographical	area.	This	makes
participants	homogeneous	on	some	dimensions	(e.g.,	SES)	and	different	from	participants	in	other
researchers’	studies.	Even	research	assistants	will	be	more	homogeneous	within	the	same	laboratory	in
potentially	relevant	ways	(e.g.,	how	well	they	are	trained)	than	a	random	sample	of	all	research	assistants
working	on	studies	related	to	the	topic.

Other	one-on-one	contacts—that	is,	people	you	contact	directly	or	who	contact	you	to	share	their	work
because	they	know	the	things	you	are	interested	in—take	you	outside	your	own	laboratory,	but	perhaps
not	far	outside.	Students	and	their	professors	share	ideas	and	pass	on	to	one	another	papers	and	articles
they	find	that	are	of	mutual	interest.	Colleagues	who	have	collaborated	in	the	past	or	have	met	and
exchanged	ideas	previously	also	will	let	one	another	know	when	new	studies	become	available.	A
colleague	down	the	hall	might	run	across	an	article	in	a	journal	or	conference	program	and,	knowing	of
your	interest	in	the	topic,	might	pass	it	on	to	you.	Occasionally,	readers	of	a	researcher’s	past	work	will
point	out	literature	they	think	is	relevant	to	the	topic	but	is	not	cited	in	the	report.	This	sometimes
happens	after	the	research	report	appears	in	print,	but	also	can	happen	as	part	of	the	manuscript	review
process.	It	would	not	be	uncommon	for	a	peer	reviewer	of	a	homework	manuscript	I	submitted	for	journal
publication	to	suggest	some	additional	relevant	articles	that	were	not	referenced	in	my	work.	These
would	be	added	to	our	list	of	relevant	research	as	we	begin	our	homework	synthesis.

Limitations	of	information	obtained	by	personal	contact.
Personal	contact	is	generally	a	restricted	communication	channel.	A	searcher	must	know	of	and
individually	contact	the	primary	researchers	to	obtain	relevant	information.	Or	the	primary	researchers
must	know	the	searcher	is	interested	in	what	they	do	in	order	to	initiate	the	exchange	of	information.	So,
much	like	a	researcher’s	own	work,	information	found	through	personal	contacts,	be	they	friends	or
colleagues,	generally	will	reflect	the	methodological	and	theoretical	biases	of	the	searcher’s	informal
social	system.	It	most	likely	will	be	more	homogeneous	in	findings	than	“all	relevant	research.”	That	is
not	to	say	that	personal	contacts	will	rarely	reveal	to	searchers	findings	that	are	inconsistent	with	their
expectations.	However,	personal	contacts	are	less	likely	to	result	in	inconsistencies	than	they	are	to
reveal	research	that	confirms	expectations	(and	looks	like	the	kind	of	research	the	colleagues	do).
Therefore,	personal	contacts	with	friends	and	colleagues	must	never	be	the	sole	source	of	studies	in	a
research	synthesis.	Research	synthesists	who	rely	solely	on	these	techniques	to	collect	relevant	work	are
acting	much	like	surveyors	who	decide	to	sample	only	their	friends.	That	said,	Figure	3.1	also	suggests
that	these	personal	contacts	may	be	the	only	way	to	obtain	studies	in	which	the	data	were	analyzed	but
never	resulted	in	a	written	research	report.

Mass	Solicitations
Sending	a	common	solicitation	to	a	group	of	researchers	can	produce	less-biased	samples	of	information.
These	contacts	require	that	you	first	identify	groups	whose	individual	members	might	have	access	to
relevant	research	reports.	Then,	you	obtain	lists	of	group	members	and	contact	the	members	individually
—typically	by	e-mail—even	if	you	do	not	know	them	personally.	For	example,	for	our	homework	search	we
contacted	the	dean,	associate	dean,	or	chair	of	77	colleges,	schools,	or	departments	of	education	at
institutions	of	higher	education.	We	asked	them	to	transmit	to	their	faculty	our	request	that	they	share
with	us	any	research	they	had	conducted	or	knew	of	that	related	to	the	practice	of	assigning	homework.

When	you	write	an	e-mail	to	a	group	of	mostly	strangers	to	ask	for	help	it	is	important	that	your	message
be	short,	courteous,	and	transparent.	It	should	say:

Who	you	are.
What	you	are	studying.	Be	general	but	not	too	broad.	For	instance,	do	not	say	“studies	on
motivation”	but	rather	“studies	on	the	effects	of	choice	on	motivation.”	A	very	broad	request	will
lead	to	nonresponse.	A	very	narrow	request	will	lead	responders	to	think	something	is	irrelevant
when	it	is.
Why	you	need	this	information	(you	are	doing	a	literature	search	and	want	to	be	as	exhaustive	as
possible).
That	you	are	willing	to	reimburse	them	for	any	expenses.
That	you	will	share	with	responders	the	final	report	of	your	project,	regardless	of	whether	they	have
relevant	reports.
A	sincere	“thanks	in	advance.”



My	experience	suggests	that	while	the	hit	rate	for	mass	mailing	is	generally	low,	those	who	do	respond
are	very	interested	and	often	provide	material	that	is	not	yet	publicly	available.	It	is	also	a	good	way	for
you	to	introduce	yourself	to	people	who	might	share	your	interests.	One	indirect	benefit	is	that	you	could
make	some	new	professional	contacts.

Limitations	of	information	obtained	through	mass	solicitation.
Mass	solicitations	can	reveal	a	more	heterogeneous	sample	of	studies	than	personal	contacts	depending
on	the	technique	used	to	generate	the	mailing	list.	For	example,	it	is	hard	to	see	how	our	strategy	of
contacting	deans,	associate	deans,	and	department	chairs	would	lead	to	a	terribly	biased	sample	of
studies	(although	we	did	not	know	exactly	which	deans	actually	forwarded	our	e-mail,	and	this	might	have
been	related	to	what	types	of	information	they	thought	we	would	be	“happiest”	to	receive).	With	regard	to
Figure	3.1,	I	suspect	that	information	on	studies	that	were	stopped	after	the	data	were	analyzed	but	no
report	was	written	is	less	likely	to	be	retrieved	by	mass	mailing	than	it	is	by	personal	contact.	In	mass
mailings,	the	searcher	is	less	likely	to	be	known	to	the	recipient	of	the	solicitation.

Traditional	Invisible	Colleges
Another	channel	of	direct	communication,	a	bit	less	restrictive	than	personal	contacts,	is	called	the
invisible	college.	According	to	Crane	(1969),	invisible	colleges	are	formed	because	“scientists	working	on
similar	problems	are	usually	aware	of	each	other	and	in	some	cases	attempt	to	systematize	their	contacts
by	exchanging	reprints	with	one	another”	(p.	335).	Through	a	sociometric	analysis,	Crane	found	that	most
members	of	invisible	colleges	were	not	directly	linked	to	one	another	but	were	linked	to	a	small	group	of
highly	influential	members.	In	terms	of	group	communication,	traditional	invisible	colleges	are	structured
like	wheels:	influential	researchers	are	at	the	hub	and	less-established	researchers	are	on	the	rim,	with
lines	of	communication	running	mostly	between	the	hub	and	the	rim,	and	less	often	between	or	among
members	along	the	rim.

The	structural	characteristics	of	the	traditional	invisible	college	are	dependent	on	the	fact	that	in	the	past
the	informal	transmission	of	information	between	scientists	occurred	one	on	one,	primarily	through
printed	mail	and	by	telephone.	These	two	mediums	required	that	only	two	people	at	a	time	could
exchange	information	(though	multiple	two-way	communications	might	occur	in	parallel	through,	say,
mass	mailings).	Also,	the	two	communicators	had	to	know	and	choose	to	talk	to	one	another.	Thus,
influential	researchers	acted	as	hubs,	both	restricting	the	input	(entry)	and	directing	the	output	of	(access
to)	information	to	a	group	of	researchers	known	to	them.

Today,	traditional	invisible	colleges	still	exist	but	they	have	lessened	in	importance	because	of	the	ease
and	speed	with	which	researchers	can	communicate	with	one	another.	For	example,	for	our	homework
search,	we	sent	similar	e-mails	to	21	scholars	who	our	reference	database	search	(discussed	in	a
following	section)	revealed	had	been	the	first	author	on	two	or	more	articles	on	homework	and	academic
achievement	between	1987	and	the	end	of	2003.	Among	these	21	researchers,	there	were	about	a	half
dozen	we	already	knew	were	active	homework	researchers.	So,	you	might	say	that	our	decision	to	identify
homework	researchers	by	finding	those	who	had	multiple	publications	in	recent	years	was	a	strategy	to
find	people	likely	to	be	the	hubs	of	homework	wheels.	Prominent	researchers	who	publish	frequently	in
an	area	are	likely	to	get	contacted	more	often	than	researchers	just	starting	out.	Our	requests	to	these
hubs	were	not	only	that	they	send	us	their	research,	but	also	that	they	send	us	other	research	they	were
aware	of	and	to	suggest	other	researchers	we	should	contact.

Limitations	of	information	obtained	through	traditional	invisible	colleges.
The	influence	of	prominent	researchers	over	the	information	communicated	through	traditional	invisible
colleges	holds	the	key	to	assessing	the	biases	in	the	information	transmitted	through	this	channel.
Synthesists	gathering	research	solely	by	contacting	prominent	researchers	will	probably	find	studies	that
are	more	uniformly	supportive	of	the	beliefs	held	by	these	central	researchers	than	are	studies	gathered
from	all	sources.	This	is	because	new	or	marginal	researchers	who	produce	a	result	in	conflict	with	that
of	the	hub	of	an	invisible	college	would	be	less	likely	to	try	to	enter	their	work	into	this	channel.	If	the
disconfirming	researchers	do	try	to	enter	the	invisible	college,	they	are	less	likely	to	see	their	work	widely
disseminated	throughout	the	network.	Disconfirming	findings	may	lead	a	researcher	already	active	in	an
invisible	college	to	leave	the	network.	Also,	because	the	participants	in	a	traditional	invisible	college	use
one	another	as	a	reference	group,	it	is	likely	that	the	kinds	of	operations	and	measurements	used	in	their
research	will	be	more	homogeneous	than	those	used	by	all	researchers	who	might	be	interested	in	a
given	topic.

Electronic	Invisible	Colleges
While	traditional	invisible	colleges	still	exist	today,	there	exists	also	a	newer	type	of	invisible	college.	This
is	really	a	hybrid	of	the	invisible	college	and	mass	mailings.	With	the	Internet,	the	need	has	diminished
for	communication	hubs	that	hold	together	groups	of	scientists	interested	in	the	same	topic.	Instead,	the



Internet	does	it	for	the	group.	The	Internet	allows	searchers	to	send	the	same	information	request
simultaneously	to	a	group	whose	members	share	an	interest	but	may	be	largely	unknown	to	one	another.

Electronic	invisible	colleges	operate	through	the	use	of	computerized	list	management	programs.	These
programs	maintain	mailing	lists	and	automatically	send	e-mail	messages	to	members.	So,	for	our
homework	synthesis,	we	identified	a	group	called	the	National	Association	of	Test	Directors,	composed	of
the	directors	of	research	or	evaluation	in	over	100	school	districts.	We	contacted	the	manager	of	the
distribution	list	and	asked	this	person	to	send	our	request	for	studies	to	members.	If	you	are	a	member	of
an	organization	that	is	relevant	to	your	topic,	you	may	be	able	to	make	this	request	directly	of	the	other
members.

Sometimes	groups	of	researchers	may	not	be	associated	with	a	formal	distribution	list	maintained	by	an
organization	but	rather	communicate	through	informal	lists.	In	other	instances,	researchers	may	be
members	of	a	growing	number	of	Internet	vehicles	that	allow	like-minded	individuals	to	share
information.	These	include	electronic	bulletin	boards	or	discussion	groups,	Facebook,	LinkedIn,
ResearchGate,	and	the	e-mail	lists	on	which	members	hold	electronic	discussions	by	submitting	topics	or
questions	and	receiving	comments	from	other	subscribers.	Any	of	these	can	be	used	to	make	requests	for
research	reports.

How	do	literature	searchers	know	what	electronic	invisible	colleges	are	out	there?	The	best	way	to	find
these	is	to	do	an	Internet	search	including	keywords	about	your	area	of	interest	and	the	terms	discussion
group,	electronic	bulletin	board,	or	e-mail	list	and	descriptors	of	the	topic	of	interest.	Lists	also	can	be
found	by	visiting	Internet	sites	of	research	organizations.1	Many	organizations	now	support	special
interest	groups	that	bring	together	researchers	with	common	interests,	further	blurring	the	line	between
mass	correspondence	and	invisible	colleges.

Limitations	of	information	obtained	through	electronic	invisible	colleges.
A	large	majority	of	subscribers	to	distribution	lists	or	discussion	groups	who	receive	messages	asking	for
help	in	identifying	studies	relevant	to	a	particular	topic	probably	could	not	help	you	find	studies	and	will
not	respond.	But	if	even	a	few	do	know	of	studies,	this	can	be	very	helpful.	Especially,	these	channels	can
help	you	locate	new	research—perhaps	in	report	form	but	not	yet	submitted	for	publication	or	in	the
publication	queue	but	not	yet	published—or	old	research	that	never	made	its	way	into	another
communication	channel.

Electronic	invisible	colleges,	unless	they	are	associated	with	stable	organizations,	can	be	temporary,
informal	entities	that	often	deal	with	special	problems.	They	can	vanish	when	the	problem	is	solved	or	the
focus	of	the	discipline	shifts.	They	can	become	out	of	date	by	including	researchers	whose	interests	have
moved	on	from	the	topic.	They	can	exclude	new	researchers	who	have	recently	entered	the	field	and	do
not	yet	know	of	the	invisible	college’s	existence.	That	is	why	it	is	good	practice	to	use	electronic	invisible
colleges	along	with	the	more	direct	personal	contacts	described	previously.

Electronic	distribution	lists	can	be	less	restrictive	than	a	traditional	invisible	college	because	while	an
individual	may	act	as	the	list	coordinator	(the	hub)	many	lists	are	not	moderated	by	individuals	at	all.
Instead,	the	computer	often	acts	as	the	hub	of	the	communication	wheel.	It	disseminates	the
communications	that	come	to	it	without	imposing	any	restrictions	on	content.	In	moderated	mailing	lists,
the	list	of	members	can	be	held	privately	and	admittance	and/or	content	may	be	screened,	so	these	can
function	more	like	traditional	invisible	colleges.

Anyone	can	join	many	distribution	lists,	once	they	know	that	the	list	exists,	by	sending	a	simple	command
to	the	list’s	host	computer.	Other	lists	require	more-formal	membership.	So,	I	could	not	join	the	National
Association	of	Test	Directors	e-mail	list	because	I	am	not	a	test	director.	(We	had	to	contact	the	list
coordinator	and	ask	that	person	to	send	the	request	on	to	members.)	Generally,	however,	literature
searchers	who	use	these	channels	to	gather	research	should	obtain	a	more	heterogeneous	set	of	studies
than	would	be	the	case	using	a	traditional	invisible	college	or	personal	contacts.

Still,	distribution	lists	will	not	produce	studies	as	diverse	in	method	and	outcome	as	“all	relevant
research.”	Subscribers	may	still	share	certain	biases.	For	example,	I	might	try	to	gather	research
investigating	homework	by	contacting	the	e-mail	list	of	the	American	Psychological	Association’s	(APA’s)
Division	of	Educational	Psychology.	Subscribers	to	this	list	might	overrepresent	researchers	who	do	large-
scale	surveys	or	experiments	and	underrepresent	researchers	who	do	ethnographic	studies.	And,	of
course,	in	order	to	use	these	lists,	you	must	know	they	exist,	suggesting	that	less-established	researchers
are	less	likely	to	know	of	and	contribute	to	them.

In	sum,	then,	all	the	researcher-to-researcher	channels	share	an	important	characteristic:	There	are	no
restrictions	on	what	two	colleagues	can	send	to	one	another.	Therefore,	samples	of	studies	found	through
personal	contacts,	mass	solicitations,	invisible	colleges	and	the	like	are	more	likely	to	contain	studies	that
have	not	undergone	scrutiny	by	others	(e.g.,	peer	review)	than	will	some	other	methods	for	retrieving
studies.	Because	of	the	reasons	suggested	in	Figure	3.1,	many	of	the	studies	found	through	direct	contact
may	never	appear	in	more-restricted	communication	channels.	In	addition,	many	of	the	researcher-to-



researcher	channels	for	scientific	communication	are	likely	to	retrieve	studies	that	are	more
homogeneous	in	methods	and	results	than	all	studies	that	are	relevant	to	the	topic.

Quality-Controlled	Channels
Quality-controlled	channels	of	communication	require	research	to	meet	certain	criteria	related	to	the	way
the	research	was	conducted	before	the	reports	can	gain	entry.	Whether	or	not	the	criteria	are	met
typically	is	judged	by	other	researchers	who	are	knowledgeable	about	the	research	area,	so	in	this	way
this	channel	resembles	the	traditional	invisible	college.	It	is	different	from	the	invisible	college,	however,
in	that	in	most	instances	a	report	submitted	for	inclusion	in	a	quality-controlled	channel	will	likely	be
judged	by	more	than	one	person.	The	two	major	quality-controlled	channels	are	conference	presentations
and	scholarly	journals.	Their	characteristics	are	summarized	in	Table	3.2.

Conference	Presentations
There	are	a	multitude	of	social	science	professional	societies,	structured	both	by	professional	concerns
and	topic	areas,	and	many	of	them	hold	yearly	or	biannual	meetings.	By	attending	these	meetings	or
searching	the	Internet	for	the	papers	given	at	them,	you	can	discover	what	others	in	your	field	are	doing
and	what	research	has	recently	been	completed.

As	an	example	of	a	search	for	conference	presentations,	in	preparing	this	chapter	I	visited	the	website	of
the	American	Educational	Research	Association	(AERA)	and	followed	the	link	to	the	2015	convention
program.	Along	the	way,	I	had	to	identify	myself	as	a	member	or	guest,	and	I	had	different	privileges
depending	on	what	my	status	was.	Appropriately,	none	of	these	privileges	related	to	my	access	to	the
program	proper;	however,	different	organizations	may	have	different	rules	and	may	restrict	access	to
programs.

Next,	I	entered	the	search	term	homework	and	received	the	titles	of	23	presentations,	along	with
information	about	the	session	at	which	the	paper	was	scheduled	to	be	presented,	and	a	brief	abstract	of
the	presentation.	Another	link	took	me	to	a	description	of	all	the	papers	in	the	session	and	the	sponsoring
division	of	the	organization.	A	separate	link	for	each	presentation	then	took	me	to	a	page	with	the	titles,
authors,	and	the	authors’	professional	affiliations.

As	is	typical	of	most	websites	for	convention	programs,	there	was	no	link	to	a	complete	paper	or	to
specific	contact	information	for	the	authors.	Still,	with	their	name	and	affiliation,	I	could	easily	search	for
an	author’s	contact	information	through	the	AERA	convention	website	or	elsewhere	on	the	Internet	and
send	each	author	a	request	for	a	copy	of	the	paper	(and	for	other	related	papers	they	may	have).	Also,
depending	on	the	type	of	organization	or	conference,	it	is	becoming	more	common	for	authors	to	be	asked
to	submit	more	lengthy	summaries	or	even	complete	papers	along	with	the	abstract	of	their	presentation.

I	could	do	similar	searches	separately	for	each	AERA	meeting	program	back	to	2005.	I	also	could	conduct



similar	searches	for	papers	presented	at	other	related	meetings	(e.g.,	the	Society	for	Research	in	Child
Development)	as	well	as	regional	educational	research	associations.	Or,	if	I	wanted	to	do	a	more	general
search	of	conference	proceedings,	I	could	use	the	databases	PapersFirst	or	ProceedingsFirst	(available
through	my	institutional	library).	These	databases	contain	papers	presented	at	conferences	worldwide.

Limitations	of	information	obtained	through	conference	proceedings.
In	comparison	to	personal	contacts,	the	research	found	through	conference	proceedings	is	less	likely	to
reveal	a	restricted	sample	of	results	or	operations	and	more	likely	to	have	undergone	peer	review.
However,	the	selection	criteria	for	meeting	presentations	are	usually	not	as	strict	as	those	required	for
journal	publication;	in	general,	a	larger	percentage	of	presentations	submitted	to	conferences	are
accepted	than	are	manuscripts	submitted	to	peer-reviewed	journals.	Also,	the	proposals	that	researchers
submit	for	evaluation	by	a	conference	committee	are	often	not	very	detailed.	Finally,	some	researchers
are	invited	to	give	papers	by	the	people	who	put	together	the	meeting	agenda.	These	invited	addresses
generally	are	not	reviewed	for	quality:	they	are	assumed	to	be	high	quality	based	on	the	past	work	of	the
invitee.

A	search	for	presentations	complements	a	search	of	published	studies	because	some	presentations	given
at	meetings	will	describe	data	that	never	will	be	submitted	for	journal	publication.	Or,	the	data	will	be
relatively	new	and	will	have	not	yet	made	their	way	through	the	publication	process.	Researchers	may
never	follow	up	a	presentation	by	preparing	a	manuscript	or	they	may	present	a	paper	before	a
publishable	manuscript	has	been	written,	reviewed,	or	accepted.	(It	is	also	the	case	that	research	that	has
already	been	published	typically	is	not	permitted	to	be	given	as	a	paper	presentation	at	most	large
organization	conferences.)	Journals	also	often	have	long	lag	times	between	when	a	manuscript	is
submitted	and	when	it	is	published.	McPadden	and	Rothstein	(2006)	found	that	about	three-quarters	of
the	best	papers	presented	at	Academy	of	Management	conferences	eventually	were	published	and	the
average	time	to	publication	was	about	two	years	after	submission.	Nearly	half	of	the	published	papers
included	more	or	different	data	than	were	described	in	the	conference	proceedings.	These	new	data
included	the	addition	of	more	outcome	variables,	an	important	component	of	a	thorough	research
synthesis.	A	less-selective	sample	of	all	papers	presented	at	annual	conferences	of	the	Society	for
Industrial	and	Organizational	Psychology	revealed	that	only	about	half	were	eventually	published	and
60%	of	these	contained	data	that	were	different	from	those	reported	in	the	conference	paper.	For	this
reason,	if	you	find	a	paper	presentation	that	is	relevant	to	your	search	but	the	conference	occurred	some
time	in	the	past,	it	is	good	to	contact	the	author	to	see	if	a	more	complete	and	up-to-date	description	of
the	research	is	available.

Scholarly	Journals
Synthesists	can	learn	of	research	done	in	a	topic	area	by	examining	the	journals	they	themselves
subscribe	to,	or	those	they	believe	are	relevant	and	have	access	to	through	colleagues	or	their	library.
Journal	publication	is	still	the	core	of	the	formal	scientific	communication	system.	Journals	are	the
traditional	link	between	primary	researchers	and	their	audience.

Limitations	of	information	obtained	through	journals.
There	would	be	some	serious	biases	in	a	literature	search	that	used	personal	journal	reading	as	the	sole
or	major	source	of	research.	The	number	of	journals	in	which	relevant	research	might	appear	is	generally
far	greater	than	those	that	a	single	scientist	examines	routinely.	As	early	as	1971,	Garvey	and	Griffith
noted	that	scholars	had	lost	the	ability	to	keep	abreast	of	all	information	relevant	to	their	specialties
through	personal	readings	and	journal	subscriptions.	Thus,	scientists	tend	to	restrict	the	journals	they
read	routinely	to	ones	that	operate	within	networks	of	journals	(Xhignesse	&	Osgood,	1967).	Journal
networks	comprise	a	small	number	of	journals	that	tend	most	often	to	cite	research	published	in	other
network	journals.

Given	that	personal	journal	reading	is	likely	to	include	journals	in	the	same	network,	it	would	not	be
surprising	to	find	some	commonalities	shared	by	network	members.	As	with	personal	contacts	and
traditional	invisible	colleges,	we	would	expect	greater	homogeneity	in	both	research	findings	and
operations	within	a	given	journal	network	than	in	all	the	research	available	on	a	topic	area.

The	appeal	of	using	personal	journal	subscriptions	as	a	source	of	information	lies	in	their	ease	of
accessibility.	The	content	of	these	journals	also	will	be	credible	to	the	reference	group	the	synthesists
hope	will	read	their	work.	So,	personal	journal	readings	should	be	used	to	find	research	for	a	synthesis,
but	this	should	not	be	the	sole	source	of	studies.	One	criticism	of	research	syntheses	in	the	past	was	that
they	relied	too	heavily	on	personal	contacts	and	the	synthesist’s	own	journal	network.	It	should	be
obvious	now	why	using	just	these	two	search	channels	can	produce	a	biased	sample	of	studies.

Online	journals.
The	journals	researchers	routinely	consult	for	work	related	to	their	interests	can	come	to	them	on	printed



pages	or	online.	Online	journals	are	rapidly	replacing	print	journals.	Online	journals	disseminate	and
archive	full-text	reports	of	scholarly	work	using	computer	storage	media	(see	Peek	&	Pomerantz,	1998,
for	the	early	history	of	electronic	journals).	Many	journals	appear	in	both	print	and	online	form.	Other
journals	are	strictly	paper	or	strictly	online.

There	are	two	characteristics	of	online	journals	that	distinguish	them	from	print	journals.	First,	far	fewer
online	journals	than	print	journals	use	peer	review	procedures	to	screen	the	work	they	publish.	It	is
critical	for	you	to	know	which	journals	you	have	accessed	do	and	do	not	evaluate	submitted	articles	so
you	can	use	this	information	to	assess	both	the	potential	methodological	rigor	of	the	studies	and	the
likelihood	of	bias	against	null	findings	(see	the	following	section).	Second,	relative	to	print	journals	online
journals	can	have	much	shorter	times	between	when	a	paper	is	accepted	and	when	it	is	published.	In	fact,
journals	that	appear	in	print	and	online	often	make	the	online	version	available	weeks	or	months	in
advance	of	the	print	version.	For	example,	the	APA	uses	Online	First	to	electronically	publish	issues	of
journals	before	they	appear	in	print.

Just	as	the	Internet	is	replacing	the	need	for	(and	is	removing	some	of	the	biases	of)	the	invisible	college,
it	is	also	dissolving	journal	networks.	Two	developments	have	opened	the	journal	searching	process	in
ways	that	help	bring	all	sorts	of	journal	articles	to	searchers.	The	first	involves	alert	systems.	Many
journals	now	have	systems	that	will	inform	you	of	the	contents	of	current	and	upcoming	published
articles.	What	you	need	to	do	is	visit	the	websites	of	journals	that	publish	articles	that	interest	you	and	set
up	an	account	that	will	put	you	on	the	alert	e-mail	list.	These	journals	can	span	multiple	disciplines.	You
can	do	this	for	as	many	journals	as	you	wish.	There	are	even	alert	services	that	will	send	you	an	e-mail
when	an	article	contains	keywords	you	have	designated,	cutting	down	on	content	that	is	irrelevant	to	your
interest.	Finally,	once	you	have	published	an	article,	you	may	receive	an	invitation	to	join	a	service	that
will	alert	you	whenever	your	article	is	cited	or	when	articles	with	similar	content	appear.

The	second	development	involves	open	access	journals;	these	journals	make	their	articles	available	to
readers	on	the	Internet	free	of	charge.	The	expense	of	preparing	the	manuscript	and	distributing	it
(which	can	be	much	less	than	print	journals)	is	borne	by	the	author	or	an	institution	supportive	of	open
access.	Thus,	you	do	not	have	to	subscribe	to	these	journals	in	order	to	download	entire	articles	from	the
Internet.	With	the	cost	of	subscriptions	no	longer	an	issue,	these	journals	can	broaden	your	reading
habits	well	beyond	just	a	few	journals	in	a	journal	network.

Finally,	you	should	check	with	your	university	or	place	of	employment	to	see	if	it	has	any	agreements	with
database	services	that	provide	full	text	articles.	These	will	include	not	only	open	access	journals,	but	also
other	journals	from	publishers	who	charge	subscription	fees	but	agree	to	a	single	fee	(paid	by	your
employer)	that	allows	their	employees	free	access.

With	regard	to	open	access	journals,	one	potential	drawback	for	literature	searchers	is	that,	while
obtaining	complete	journal	articles	is	easier	for	readers,	access	for	researchers	may	be	more	restricted.
Because	the	researcher	must	bear	the	publication	costs,	open	access	journals	may	overrepresent	(a)
researchers	at	large	institutions	that	may	have	funds	available	for	this	purpose	and	(b)	researchers	who
have	grants	with	publication	costs	built	into	the	budget.	While	it	is	tempting	to	suggest	that	these
restrictions	provide	a	quality	control,	this	is	far	from	a	forgone	conclusion.	For	example,	an	intervention
to	increase	aerobic	exercise	is	an	expensive	undertaking	likely	requiring	some	form	of	university	or
external	support.	However,	a	survey	on	the	correlates	of	attitudes	toward	rape	or	a	laboratory	study	on
the	effect	of	choice	on	motivation	is	relatively	inexpensive.	Unfunded	researchers	at	small	institutions	can
conduct	excellent	studies	on	these	topics.	But	the	researchers	might	then	shy	away	from	publishing	in
open	access	journals;	the	publication	costs	might	be	the	most	expensive	part	of	their	studies.

Peer	Review	and	Publication	Bias
Most	scientific	journals	(and	conference	programs)	use	peer	review	to	decide	whether	to	publish	a
particular	research	report.	Upon	submission,	the	journal	editor	sends	the	report	to	peer	reviewers,	who
judge	its	suitability	for	publication.	The	primary	criteria	used	by	peer	reviewers	will	be	the
methodological	quality	of	the	research	and	the	presence	of	safeguards	against	inferential	errors.
However,	journal	reviewers	will	also	consider	the	correspondence	of	the	manuscript’s	content	to	the
substantive	focus	of	the	journal	and	whether	the	article	makes	an	important	contribution	to	the	particular
research	literature.	Largely,	these	last	two	criteria	are	irrelevant	to	the	objectives	of	a	research
synthesist.	As	a	synthesist,	you	want	articles	related	to	your	topic	regardless	of	the	foci	of	the	journals
you	read.	Also,	a	report	of	a	study	that	is	not	terribly	significant	in	its	contribution,	perhaps	because	it
reports	a	direct	replication	of	earlier	findings,	might	not	meet	a	journal’s	criterion	for	importance	but	it
still	can	be	very	important	to	include	in	a	synthesis.

The	major	concern	raised	by	the	fact	that	one	criterion	for	publication	might	be	the	importance	of	the
study’s	contribution	to	the	field	is	that	research	published	in	many	journals	is	more	likely	to	present
statistically	significant	findings—that	is,	findings	that	reject	the	null	hypothesis	with	a	probability	of	p
<.05	(or	some	other	significance	criterion)—than	all	research	on	the	topic.	This	bias	against	null	findings
is	present	in	the	decisions	made	by	both	reviewers	and	primary	researchers.	To	demonstrate,	Atkinson,



Furlong,	and	Wampold	(1982)	conducted	a	study	in	which	they	asked	consulting	editors	for	two	APA
journals	in	counseling	psychology	to	review	manuscripts.	The	manuscripts	were	identical	in	all	respects
except	whether	the	hypothesized	relation	was	statistically	significant.	Atkinson	et	al.	found	that
significant	results	were	more	than	twice	as	likely	as	nonsignificant	results	to	be	recommended	for
publication.	Furthermore,	they	reported	that	the	manuscripts	with	statistically	significant	results	were
rated	to	have	better	research	designs	than	those	with	nonsignificant	results,	even	though	the	methods
were	the	same.

Primary	researchers	also	are	susceptible	to	bias	against	null	findings.	Greenwald	(1975)	found	that
researchers	said	they	were	inclined	to	submit	significant	results	for	publication	about	60%	of	the	time.	On
the	other	hand,	researchers	said	they	would	submit	the	study	for	publication	only	6%	of	the	time	if	the
results	failed	to	reject	the	null	hypothesis.	Examining	actual	decisions	by	researchers,	Figure	3.1	reveals
a	similar	bias.	Researchers’	decisions	not	to	submit	statistically	nonsignificant	results	are	probably	based
on	their	beliefs	that	nonsignificant	findings	are	less	important	and	interesting	than	statistically	significant
ones.	Also,	they	probably	believe	that	journals	are	less	likely	to	publish	null	results.	A	study	by	Coursol
and	Wagner	(1985)	replicated	the	effect	of	significant	findings	on	both	researchers	and	peer	reviewers.	If
there	is	a	positive	note,	it	appears	that	bias	against	the	null	hypothesis	has	waned	a	bit	and	is	taken	more
seriously	in	recent	years	(Rothstein,	Sutton,	&	Borenstein,	2005).

The	bias	against	null	findings	in	journal	publication	(and	conference	presentations)	ensures	that	the	size
of	correlations	or	differences	between	the	mean	scores	of	groups	reported	in	published	works	will	be
larger	than	the	differences	you	would	be	likely	to	find	in	all	relevant	research.	Lipsey	and	Wilson	(1993)
empirically	demonstrated	the	bias	against	null	findings.	They	examined	92	meta-analyses	that	presented
separate	estimates	of	a	treatment’s	effect	found	in	published	and	unpublished	research	reports.	The
published	estimates	were	about	one-third	greater	than	the	unpublished	ones.	I	will	return	to	methods	for
detecting	and	adjusting	for	publication	bias	in	Chapter	6.

Bias	against	null	findings	is	not	the	only	source	of	bias	that	influences	the	results	of	published	research.
For	example,	researchers	believe	that	their	work	will	fare	better	in	the	peer	review	process	if	their	results
are	consistent	with	the	beliefs	of	prominent	members	of	the	field	(see	Suhls	&	Martin,	2009,	for	a	review
of	numerous	concerns	about	flaws	in	peer	review).	This	phenomenon	has	been	labeled	confirmatory	bias
(Nickerson,	1998).

The	existence	of	bias	against	null	findings	and	confirmatory	bias	means	that	quality-controlled	journal
articles	(and	conference	presentations)	should	not	be	used	as	the	sole	source	of	information	for	a
research	synthesis	unless	you	can	convincingly	argue	that	these	biases	do	not	exist	in	the	specific	topic
area.

Secondary	Channels
The	providers	of	secondary	channels	for	obtaining	research	do	so	by	gathering	document	information
from	other	sources—such	as	journals,	government	agencies,	and	even	from	researchers	directly—and
then	creating	databases	for	searchers	to	use.	They	are	constructed	by	third	parties	for	the	explicit
purpose	of	providing	literature	searchers	with	lists	of	studies	relating	to	a	topic.	The	major	secondary
channels,	summarized	in	Table	3.3,	are	research	report	reference	lists,	research	bibliographies,
prospective	research	registers,	the	Internet,	and	reference	databases,	including	citation	indexes.



Research	Report	Reference	Lists
Using	the	reference	lists	at	the	end	of	research	reports	to	locate	other	reports	that	might	be	relevant	to	a
search	is	sometimes	called	the	backward	search	or	ancestry	approach,	or,	more	informally,	footnote
chasing.	It	involves	examining	the	research	reports	you	have	already	acquired	to	see	if	they	contain
references	to	studies	as	yet	unknown	to	you.	Then,	you	judge	the	list	entries	(based	on	their	title	and
what	is	written	about	them)	for	their	relevance	to	your	problem.	If	a	reference	may	be	relevant,	you



retrieve	its	abstract	or	full	report.	The	reference	lists	of	these	reports	then	can	be	scrutinized	for	further
leads.	In	this	way,	you	work	your	way	back	through	a	literature	until	either	the	important	concepts
disappear	or	the	studies	become	so	old	you	judge	their	results	to	be	obsolete.

There	is	another	way	to	chase	references	made	possible	through	the	use	of	a	secondary	source	called	the
Web	of	Science.	When	you	are	viewing	the	full	record	of	an	article	in	the	Web	of	Science,	there	is	a	link	on
the	page:	“View	Related	Records.”	Clicking	on	the	link	will	display	all	articles	that	refer	to	at	least	one	of
the	same	earlier	papers	cited	in	the	paper	whose	page	you	were	on.	Fortunately,	the	papers	with	shared
references	are	listed	high	to	low	by	the	number	of	references	they	share.	The	assumption	here	is	that
articles	sharing	more	references	are	more	likely	to	be	related	to	one	another.	For	example,	when	I	used
Web	of	Science	to	retrieve	the	full	record	for	an	article	on	the	association	between	homework	and
achievement	that	my	lab	had	published	(Cooper,	Jackson,	Nye,	&	Lindsay,	2001),	the	record	told	me	that
the	article	contained	18	references.	When	I	clicked	on	the	“View	Related	Records”	link,	the	new	page	told
me	that	there	were	15,805	articles	that	shared	at	least	one	reference	in	common	with	our	article.	The
first	two	articles	listed	shared	six	references,	the	next	seven	shared	five	references,	and	so	on.	I	could
then	click	on	the	link	to	each	of	these	articles	to	find	its	full	record.

Limitations	of	information	obtained	through	report	reference	lists.
Reference	lists	in	primary	research	reports	are	rarely	exhaustive	compendia	of	the	relevant	research.	In
fact,	authors	are	often	advised	to	keep	such	lists	to	a	minimum	and	cite	only	the	most	directly	related
material.	They	are	meant	to	provide	context	for	interpreting	the	new	primary	research.	Furthermore,
primary	report	reference	lists	will	tend	to	cite	other	work	available	through	the	same	outlet	or	the	small
group	of	outlets	that	form	an	exchange	network,	like	a	journal	network.	Also,	studies	referred	to	in	other
study	reports	seem	to	be	more	likely	to	have	statistically	significant	results	(Dickerson,	2005).	Therefore,
you	should	expect	more	homogeneity	in	research	methods	and	results	found	through	primary	report
reference	lists	than	would	be	the	case	in	all	relevant	studies.

Another	form	of	reference	list	is	provided	by	previous	research	synthesists.	Obviously,	these	can	be
especially	helpful	sources	of	relevant	studies	and	will	likely	not	contain	the	number	and	networking
restrictions	associated	with	references	in	primary	research	reports.	However,	even	though	these	will	be
more	comprehensive,	you	should	not	assume	previous	syntheses	are	based	on	all	relevant	research.	To
determine	this,	you	would	need	to	(a)	read	and	evaluate	the	literature	search	strategies	used	by	the
synthesists	and	(b)	determine	whether	their	inclusion	and	exclusion	criteria	match	your	own.	They	also
may	be	dated,	thus	missing	the	most	recent	research.

In	sum,	searching	reference	lists,	either	through	the	ancestry	approach	or	through	related	records,	will
overrepresent	published	research	because	it	is	generally	easier	to	find	than	unpublished	work.	Also,	the
most	recently	completed	research	will	not	appear	on	these	lists	because	of	the	lag	between	when	a	final
manuscript	is	submitted	and	when	it	is	published.	However,	while	reference	lists	in	reports	should	not	be
used	as	a	sole	means	for	finding	studies,	they	are	generally	productive	sources	of	relevant	research.
Although	we	did	not	keep	track	of	the	precise	numbers,	we	found	many	homework	research	articles	by
examining	report	reference	lists.

Research	Bibliographies
Research	bibliographies	can	be	either	evaluative	or	nonevaluative	listings	of	books,	journal	articles,	and
other	research	reports	that	are	relevant	to	a	particular	topic	area.	Bibliographies	are	sometimes
maintained	by	individual	scientists,	groups	of	scientists	within	a	particular	research	area,	or	formal
organizations.	For	example,	while	I	am	not	aware	of	individuals	or	organizations	that	maintain
bibliographies	on	homework,	I	do	know	that	the	Harvard	Family	Research	Project	maintains	a	database
called	the	Out-of-School	Time	Program	Research	and	Evaluation	Database	and	Bibliography.	This
database	contains	profiles	about	research	and	evaluations	conducted	on	both	large	and	small	out-of-
school	programs	and	initiatives.	Each	profile	contains	an	overview	of	the	program	or	initiative	as	well	as
detailed	information	about	each	report	produced	about	that	program.

Limitations	of	information	obtained	through	bibliographies.
The	use	of	bibliographies	prepared	by	others	can	be	a	tremendous	time	saver.	The	problem,	however,	is
that	most	bibliographies	are	likely	to	be	of	much	greater	breadth	than	the	searcher’s	interest.	Also,	it	is
important	to	check	when	the	bibliography	was	last	updated.	Even	with	these	precautions,	comprehensive
bibliographies	generated	by	interested	parties	can	be	a	great	help	to	you.	The	compilers	have	spent	many
hours	obtaining	information,	and	the	biases	involved	in	generating	the	bibliographies	may	counteract
biases	that	exist	in	the	other	techniques	you	use	to	find	research.

Prospective	Research	Registers
Prospective	research	registers	are	unique	in	that	they	attempt	to	include	not	only	completed	research,



but	also	research	that	is	in	the	planning	stage	or	is	still	underway	(see	Berlin	&	Ghersi,	2005).	Today,
such	registers	are	more	commonly	available	in	the	medical	sciences	than	in	the	social	sciences.	Still,
there	are	ways	to	find	lists	of	social	science	research	projects	that	are	currently	underway	or	have
recently	been	completed.	For	example,	the	websites	of	many	private	foundations	or	government	agencies
that	sponsor	research	can	be	visited	to	seek	a	list	of	current	or	recent	research	grants.	For	a	topic	such	as
homework,	I	might	visit	the	websites	of	the	W.	T.	Grant	Foundation,	the	Spencer	Foundation,	the	U.S.
Department	of	Education’s	Institute	for	Education	Science,	and	the	U.S.	National	Institutes	of	Health.

As	with	bibliographies,	a	difficulty	in	finding	pertinent	research	registers	is	in	knowing	where	to	start.
Librarians	and	knowledgeable	colleagues	can	be	a	big	help	if	you	do	not	know	of	funders	in	your	area	of
interest.

Limitations	of	information	obtained	through	prospective	research	registers.
From	the	searcher’s	point	of	view,	identifying	a	prospective	research	register	with	relevant	studies	can
provide	access	to	ongoing	and	unpublished	research	that	is	not	filtered	through	personal	allegiances	as	is
personal	contact.	In	the	case	of	funded	research,	you	know	the	results	will	be	available	regardless	of	the
study’s	outcome.	This	can	be	a	great	complement	to	other	search	channels.

That	said,	prospective	research	registers	are	likely	to	overrepresent	large-scale	and	funded	research
projects.	My	examples	of	foundations	and	government	projects	make	this	clear.	Also,	the
comprehensiveness	of	the	register	is	of	greatest	importance	to	the	literature	searcher.	Therefore,	it	is
critical	that	searchers	determine	(a)	how	long	a	register	has	been	in	existence	and	(b)	how	the	research
included	in	the	register	got	to	be	there.

The	Internet
The	capability	of	the	Internet	to	assist	in	the	transfer	of	information	has	revolutionized	modern	society;
scientific	communication	has	been	no	less	affected	than	other	areas	of	human	interaction.	The	critical
task	for	research	synthesists	using	the	Internet	is	to	develop	a	strategy	for	finding	websites	with
information	that	addresses	their	problem.	Search	engines	such	as	Google,	Yahoo,	and	Bing	can	be	used
for	this	purpose.	However,	it	is	important	to	keep	in	mind	that	studies	of	the	overlap	in	search	results
when	different	search	engines	are	used	suggest	that	a	large	portion	of	the	pages	in	the	major	search
engine’s	database	exist	only	in	that	database	and	first	page	results	overlap	minimally	across	the	search
engines	(http://searchengineland.com/070601-094554.php).	So,	it	is	good	practice	to	use	more	than	one
search	engine	to	be	certain	you	are	conducting	a	thorough	search	of	the	Internet.	A	good	list	of	search
engines	for	conducting	academic-related	searches	can	be	found	at	Te@chthought
(http://www.teachthought.com/technology/100-search-engines-for-academic-research/).

Also,	you	should	keep	in	mind	that	search	engines	do	not	make	judgments	about	the	quality	of	the
material	contained	on	websites.	Especially	when	research	is	involved,	where	a	high	degree	of	expertise	is
needed	to	carry	out	a	credible	study	it	is	important	to	make	sure	the	information	you	glean	from	the
Internet	is	reliable.	This	means	you	should	not	rely	on	secondary	sources	of	information	about	studies.	If
you	find	a	secondary	source	that	describes	a	study	that	interests	you,	contact	the	researchers	directly.
Sometimes	you	will	find	full	reports	of	research	posted	on	websites.

Internet	searching	is	now	a	way	of	life.	You	provide	a	search	term,	phrase,	or	set	of	terms	and	phrases	to
the	search	engine.	All	the	search	engines	in	some	way	permit	the	use	of	Boolean	syntax	operators	to
expand	or	restrict	the	search.	Boolean	operators	allow	the	searcher	to	use	set	theory	to	help	define	the
items	that	will	be	retrieved	by	a	search.	However,	how	websites	are	represented	and	the	precise
commands	used	to	do	the	Boolean	syntax	search	will	differ	somewhat	for	each	search	engine.	All	three
search	engines	mentioned	above	provide	online	assistance	to	help	you	learn	how	to	use	them.

The	result	of	a	search	will	be	a	list	of	websites	that	fit	the	keyword	description,	most	often	because	the
website	contains	the	keyword	or	words	somewhere	on	the	web	page.	The	order	in	which	the	websites
appear	on	the	results	page	will	be	determined	by	the	search	engines	algorithms,	usually	a	function	of	the
degree	of	match	between	search	terms	and	the	website	content,	as	well	as	how	frequently	the	website	is
viewed.

As	an	Internet	search	example,	while	preparing	this	chapter	I	began	a	search	for	homework	research	by
asking	a	search	engine	to	list	all	websites	that	included	the	term	homework.	Bad	idea:	Google	found
about	167,000,000	websites.	Of	course,	many	of	these	websites	include	homework	assignments	posted	by
teachers	on	the	Internet,	tips	on	how	to	do	homework,	newspaper	articles	about	homework,	and	so	on.
The	numbers	were	no	less	daunting	when	I	added	the	term	research	to	the	search	and	required	that	both
be	present	for	the	website	to	be	retrieved	(just	100,000,000).	Even	requiring	that	the	two	terms	appear
adjacent	to	one	another	led	to	218,000	sites	in	Google.

As	these	results	suggest,	using	the	Internet	to	find	scientific	research	on	a	specific	topic	can	be
overwhelming	and	time	consuming.	It	would	be	nonsensical	to	go	to	each	of	these	websites	to	see	if	it



reported	research	relevant	to	the	research	synthesis	(and	not	found	through	other	channels).	The
Internet	contains	much	more	than	research	information.	An	Internet	search	using	the	terms	research
engines	and	social	science	will	lead	to	other	sites	that	list	search	engines	more	specific	to	your	purposes
and	potentially	related	to	your	topic.	The	search	engines	listed	in	these	sites	primarily	provide	computer
access	to	research	registers	and	to	the	reference	databases	that	I	will	describe	shortly.

The	strategies	for	searching	the	Internet	I	have	described	are	only	some	examples	of	numerous
approaches.	I	am	being	deliberately	general	here	because	these	resources	change	quickly.	With	practice,
you	will	become	more	familiar	with	the	resources	available	to	you	and	how	to	construct	searches	that
produce	relevant	material.

Limitations	of	information	obtained	through	the	Internet.
Internet	websites	can	be	constructed	by	anyone	who	has	(or	knows	someone	who	has)	the	required
expertise.	Thus,	there	is	little	restriction	on	what	information	can	be	made	available	on	websites.	And,	of
course,	this	can	be	both	a	good	thing	and	a	bad	thing	because	the	amount	of	information	can	be
exhaustive	but	overwhelming,	and	with	no	quality	check	on	content.

Reference	Databases
Finally,	the	sources	of	information	likely	to	prove	most	fruitful	to	research	synthesists	are	called	reference
databases.	These	are	indexing	services	maintained	by	both	private	and	public	organizations	associated
with	social	science	(or	other)	disciplines.

Our	search	for	homework	studies	used	four	reference	databases.	We	searched	the	Education	Resource
Information	Center	(ERIC),	PsycINFO,	Sociological	Abstracts,	and	Dissertation	Abstracts	electronic
databases	for	documents	cataloged	between	January	1,	1987,	and	December	31,	2003.	Because	these
databases	and	their	interfaces	are	constantly	being	updated,	I	recommend	that	you	visit	their	web	pages
or	your	library’s	resource	pages	to	get	the	most	current	information	about	them	and	many	other
databases.	One	good	general	source	of	information	on	databases	is	the	Gale	Directory	Library
(http://www.gale.cengage.com/DirectoryLibrary/).

Another	reference	database	used	frequently	across	all	the	sciences	is	the	Web	of	Science	Core	Collection
(http://wokinfo.com/).	When	I	ran	my	search,	using	the	term	homework	with	no	restrictions	on	dates	or
indexes	searched	but	restricting	my	record	field	to	“topic”	(excluding	authors	and	publications	named
“homework”)	I	retrieved	3,174	documents.	The	core	collection	searches	several	separate	databases
related	to	different	disciplines,	including	the	Science	Citation	Index	Expanded,	Social	Sciences	Citation
Index,	Arts	&	Humanities	Citation	Index,	as	well	as	several	indexes	that	include	conference	proceedings
and	books.	If	I	restricted	my	search	to	only	the	time	span	1987	to	2015	and	only	the	Social	Science
Citation	Index,	the	result	was	reduced	to	1,902	documents.	The	Web	of	Science	search	home	page	links	to
a	tutorial	that	gives	you	a	quick	tour	of	what	it	has	to	offer,	and	to	tips	on	searching	and	training
materials	on	some	of	its	advanced	procedures	(e.g.,	citation	reports	and	maps).

A	relatively	new	reference	database	that	is	broad	in	its	reach	and	free	to	the	public	is	Google	Scholar
(http://scholar.google.com/intl/en/scholar/about.html).	This	search	engine	is	restricted	to	scholarly
documents	and	permits	the	specification	of	searches	that	can	take	many	of	the	irrelevant	documents	out
of	the	search	results.	So,	searching	“homework”	in	Google	Scholar	retrieved	457,000	documents.	But
when	I	used	the	Advanced	Search	feature	to	specify	that	both	the	terms	homework	and	effects	had	to
appear	in	the	title	of	a	document	appearing	between	1995	and	2015,	I	found	245	entries.

Limitations	of	information	contained	in	reference	databases.
Even	though	reference	databases	are	superb	sources	of	studies,	they	have	limitations.	First,	there	can	be
a	time	lag	between	when	a	study	is	completed	and	when	it	will	appear	in	the	reference	database,	though
technology	has	reduced	this	lag	dramatically.	Still,	the	study	must	be	written	up	and	submitted,	accepted
into	its	primary	outlet,	appear	in	print	or	online,	and	then	cataloged	into	the	reference	database.	So,	the
most	recently	completed	research—the	type	you	would	find	by	contacting	researchers	or	research
contained	in	prospective	registers	(and	perhaps	on	the	Internet)—will	not	appear	in	reference	databases.
Second,	each	reference	database	contains	some	restrictions	on	what	it	allows	to	enter	the	system	based
on	topical	or	disciplinary	boundaries.	Therefore,	if	you	are	interested	in	an	interdisciplinary	topic	you	will
need	to	access	more	than	one	reference	database.	For	example,	studies	about	homework	certainly
interest	education	researchers	but	might	also	appear	in	psychology	or	sociology	journals.	Third,	some
reference	databases	contain	only	published	research,	others	both	published	and	unpublished	research,
and	others	just	unpublished	research	(e.g.,	dissertation	abstracts).	So,	if	you	want	to	minimize	publication
bias,	it	is	important	to	find	out	the	coverage	of	the	databases	you	plan	to	use	and	try	to	include	databases
that	assemble	unpublished	as	well	as	published	documents.

Citation	indexes.



A	citation	index	is	a	unique	kind	of	reference	database	that	identifies	and	groups	together	all	published
articles	that	have	referenced	(cited)	the	same	earlier	publication.	In	this	way,	the	earlier	publication
becomes	the	indexing	term	for	the	more	recent	articles.	In	contrast	to	using	research	report	reference
lists	to	look	backward	for	the	ancestors	of	a	report,	a	citation	index	does	a	forward	search	using	a
descendance	approach.	Three	citation	indexes	produced	by	the	Institute	for	Scientific	Information	are
available	through	subscription	or	most	research	libraries	and	can	be	entered	through	the	Web	of	Science.
It	provides	access	through	the	Web	of	Science	Core	Collection	to	the	Science	Citation	Index	Expanded
(which	includes	published	articles	in	science	journals	from	1900	to	the	present),	the	Social	Sciences
Citation	Index	(beginning	in	1956),	and	the	Arts	&	Humanities	Citation	Index	(beginning	in	1975).	As
noted,	the	Web	of	Science	also	provides	cited	reference	searching	and	thus	allows	users	to	move	forward
and	backward	through	the	literature.

Past	research	is	not	the	only	way	to	track	down	descendants.	The	search	for	studies	concerning	individual
differences	in	rape	attitudes	also	used	the	Social	Sciences	Citation	Index	to	great	effect	even	though	we
could	not	identify	seminal	research	articles.	Here,	five	frequently	used	measures	of	attitudes	toward	rape
were	identified	and	the	articles	in	which	the	measures	were	originally	described	were	used	to	access	the
citation	index.	We	found	545	citations	of	the	five	scales	and	examined	their	abstracts	to	determine	if	the
studies	were	relevant	to	the	study	of	individual	differences.

Limitations	of	information	contained	in	citation	indexes.
Citation	indexes	limit	entry	to	references	in	published	research,	both	journals	and	books.	Therefore	we
can	expect	a	bias	against	the	null	hypotheses	in	citations	in	the	same	way	we	expect	this	in	the	references
we	find	in	research	reports.	However,	the	coverage	of	the	Social	Science	Citation	Index	is	quite
exhaustive	within	these	categories.	Also,	citation	indexes	will	miss	more-recent	publications	because	of
the	time	it	takes	to	index	documents.

Database	vendors.
All	major	research	libraries	have	numerous	reference	databases	available.	Reference	librarians	can	help
you	identify	the	databases	most	appropriate	for	your	search	and	can	provide	the	introductory	instructions
needed	to	access	them.	Once	you	have	identified	the	databases	of	relevance	to	your	search,	the	database
interface	will	contain	step-by-step,	menu-driven	instructions	that	make	them	easy	to	use.	However,	the
same	database	can	be	provided	to	your	library	by	more	than	one	vendor	and	the	results	of	your	search
using	the	same	database	may	be	slightly	different	depending	on	which	vendor	you	choose.	This	likely
happens	because	of	differences	in	the	frequency	with	which	the	databases	are	updated.

Conducting	Searches	of	Reference	Databases
Research	libraries	employ	trained	specialists	who	can	conduct	your	search	or	help	you	through	the
process.	It	is	good	practice	to	discuss	your	search	with	a	trained	research	librarian	before	you	begin;	they
are	likely	to	have	suggestions	about	places	to	look	that	you	have	not	thought	of.	Also,	there	are	many
publications	that	can	help	you	start	thinking	about	a	search.	Reed	and	Baxter	(2009)	provide	a	more	in-
depth	treatment	of	reference	database	searching	strategies	in	the	context	of	research	synthesis.

Typically,	you	begin	your	reference	database	search	by	deciding	which	databases	to	access.	So,	we
started	a	search	for	homework	research	by	searching	PsycINFO,	ERIC,	Sociological	Abstracts,	and
Dissertation	Abstracts.	The	synthesis	on	aerobic	exercise	searched	13	databases,	including	not	only
PsycInfo	and	ERIC	but	also	databases	covering	research	on	medicine,	health,	exercise,	and	aging.	You
choose	the	databases	based	on	your	understanding	of	how	likely	they	are	to	include	documents	relevant
to	your	search.	You	should	also	be	familiar	with	the	database	catchment	of	documents.	Does	it	include
journals	that	are	likely	to	include	relevant	research?	Does	it	contain	only	journal	articles	or	also	paper
presentations,	dissertations,	and	other	kinds	of	reports?	If	a	certain	type	of	report	is	lacking,	does
another	database	include	these	reports?

Before	entering	any	of	my	choices	of	databases,	I	checked	to	see	if	more	than	one	vendor	offered	them
through	my	university.	I	found	that	my	university	offered	PsycINFO	through	two	vendors.	One	vendor
permitted	me	to	search	both	PsycINFO	and	ERIC	at	the	same	time.	Therefore,	using	this	vendor	would
save	me	the	effort	of	removing	duplicate	documents	from	separate	searches	of	each	database.	I	also
found	little	difference	in	the	number	of	documents	retrieved	using	the	term	homework	in	the	ERIC
database	using	the	two	different	vendors.	(I	chose	ERIC	to	run	this	test	because	I	anticipated	that	it	is	the
database	that	would	reveal	the	most	relevant	documents.)	So,	I	chose	the	vendor	that	permitted	me	to
search	jointly	ERIC	and	PsycINFO.

Keywords	and	other	search	parameters.
Next,	I	chose	the	terms	I	used	to	search	for	documents.	A	searcher	can	browse	through	thesauri	that
accompany	the	different	databases	to	identify	terms	that	might	not	have	initially	come	to	mind.	You	can



also	use	examples	of	documents	you	hope	to	retrieve	and	see	what	terms	are	used	to	index	these
documents	or	that	appear	in	their	title	or	abstract.	This	gives	you	some	concrete	idea	about	how	to	access
the	material	you	want.	Also,	if	you	run	a	search	and	it	does	not	capture	documents	you	know	are	relevant,
something	has	gone	awry.

Regardless	of	how	you	identify	terms	to	use	in	a	search,	when	you	evaluate	the	search	procedures	used	in
a	research	synthesis,	you	should	ask	the	question,

Were	proper	and	exhaustive	terms	used	in	searches	and	queries	of	reference	databases	and	research
registries?

I	began	my	search	simply	with	the	term	homework	because	I	first	wanted	to	explore	whether	related
terms	exist.	My	search	engine	had	a	link	to	the	ERIC	Thesaurus,	which	relates	the	term	homework	to	the
terms	assignments	and	home	study.	I	can	then	use	an	explode	function	to	expand	these	terms	and
examine	yet	more	terms.	These	terms	seemed	too	far	afield	(instruction	comes	up	as	a	term	related	to
assignments,	and	distance	education	as	a	term	related	to	home	study),	so	I	decided	to	use	just
“homework”	without	much	concern	that	too	many	relevant	documents	will	be	missed.	The	thesaurus	for
PsycINFO	told	me	that	the	term	homework	was	added	in	1988.	It	also	told	me	that	the	definition	of
homework	used	in	the	database	was	an	“assignment	given	to	students	or	clients	to	be	completed	outside
regular	classroom	period	or	therapeutic	setting”	(APA,	2015).	Here,	then,	I	encountered	an	instance	in
which	the	same	term	is	used	in	two	very	different	contexts,	one	academic	and	one	therapeutic.	This
alerted	me	to	the	possible	need	to	restrict	my	search	in	some	way	to	exclude	therapeutic	homework	in	a
clinical	situation.	The	PsycINFO	thesaurus	offered	three	related	terms:	note	taking,	psychotherapeutic
techniques,	and	study	habits.	I	decided	that	none	of	these	would	likely	add	many	relevant	studies	if	the
term	homework	is	already	in	the	search.2

It	is	also	possible	to	truncate	your	keywords	so	you	can	capture	variations	on	the	theme.	For	example,	the
search	for	aerobic	exercise	intervention	effects	used	the	truncated	keyword	“cogniti*.”	That	way,	the
search	would	pick	up	words	such	as	“cognition,”	and	“cognitive,”	as	well	as	any	other	words	with	the
same	first	letters.

Next,	I	set	my	search	parameters.	I	decided	to	use	the	search	terms	homework	and	achievement.	I
wanted	both	terms	to	appear.	So	I	used	the	Boolean	operator	AND.	The	search	engines	will	also	let	you
use	the	OR	operator,	and	sometimes	the	NOT	operator,	when	you	do	not	want	documents	containing	a
keyword.	For	example,	I	might	have	wanted	to	exclude	homework	reports	that	included	the	word
“college”	in	the	title.	The	addition	of	“achievement”	to	the	search	should	exclude	all	or	most	of	the
research	in	which	homework	is	part	of	a	therapeutic	regimen.	My	search	engine	then	gave	me	a	series	of
other	decisions	to	make	regarding	whether	I	wanted	to	restrict	my	search	to,	for	example,	only	journal
articles,	only	articles	intended	for	specific	audiences,	and	only	studies	using	particular	research
methodologies.	Consistent	with	my	problem	definition,	I	decided	to	leave	the	search	unrestricted	except
for	two	parameters.	First,	I	wanted	documents	that	pertained	only	to	school	age	children	(6	to	12	years
old)	and	adolescents	(13	to	17	years	old),	not	early	childhood	or	adulthood.	Second,	I	only	wanted
documents	that	appeared	since	2006,	the	last	time	we	synthesized	the	research	on	homework.

Finally,	I	decided	that	I	wanted	to	see	only	documents	that	used	the	two	terms	homework	and
achievement	in	the	abstract.	I	could	restrict	documents	to	those	that	used	homework	in	the	title,	but	that
seemed	too	restrictive.	I	am	aware	that	there	are	some	studies	that	use	homework	as	one	of	many
predictors	of	achievement	and	therefore	it	is	more	likely	to	be	mentioned	in	the	abstracts	of	these	articles
but	not	in	the	title.	Including	all	documents	that	mention	homework	anywhere	in	the	text	seemed	too
inclusive.

It	is	also	possible	to	run	more	than	one	search	and	combine	them	in	some	fashion.	I	could	have	run	a
search	on	“homework”	and	another	on	“achievement.”	I	could	then	have	asked	the	search	engine	to
combine	these	into	a	third	search	or	to	create	a	third	search	that	included	documents	that	appeared	in
one	search	but	not	the	other.	This	can	be	a	good	strategy	early	in	a	search	when	you	are	still	considering
the	breadth	of	your	conceptual	definitions	and	whether	broader	definitions	are	possible.	It	can	be	used	to
tell	you	how	many	documents	are	added	or	removed	depending	on	the	breadth	of	your	concepts.

In	making	these	decisions,	I	was	making	trade-offs	between	the	recall	and	precision	of	my	search.	The
term	recall	relates	to	the	percentage	of	all	relevant	documents	that	my	search	uncovers.	I	want	high
recall	so	I	do	not	miss	documents.	However,	the	higher	the	recall	of	my	search	(the	more	and	broader	the
keywords	were	that	I	use	in	the	search),	the	more	likely	it	is	that	I	will	retrieve	many	document	records
that	are	irrelevant	to	my	search.	The	term	precision	relates	to	the	percentage	of	all	retrieved	documents
that	are	relevant	to	my	search.	The	more	precise	my	search,	the	more	likely	it	is	that	I	will	miss	some
relevant	studies.	Obviously,	as	the	recall	of	a	search	goes	up,	the	precision	goes	down.	The	keywords	you
choose	will	determine	the	recall	and	precision	of	your	search.

On	the	day	I	conducted	this	search,	I	found	about	150	documents	that	met	the	inclusion	criteria.	I	could



then	repeat	my	search	with	the	other	databases,	keeping	my	search	parameters	as	similar	as	possible.

Let	me	also	illustrate	a	search	of	a	citation	index.	I	did	a	search	for	my	book	Homework	(Cooper,	1989)
using	Google	Scholar.	First,	I	opened	the	“Advanced	Scholar	Search”	by	clicking	on	the	down	arrow	in	the
search	box.	I	provided	the	last	name	of	the	author	(Cooper),	the	keyword	(homework),	indicated	that	I
wanted	the	keyword	in	the	title	of	the	work	and	that	the	work	should	have	appeared	in	1989.	This	is	a
very	restricted	search,	as	it	is	looking	for	citations	to	only	a	single	publication.	Had	I	entered	only
“Cooper	H”	and	left	the	cited	work	and	year	unspecified,	I	would	retrieve	citations	to	all	documents
authored	by	scholars	who	share	this	last	name	and	first	name	initial.	My	search	gave	me	11	results	with
my	book	at	the	top	of	the	list.	Under	a	brief	abstract	was	a	link,	“Cited	by	528.”	Clicking	on	this	link
brought	me	to	a	page	with	the	titles,	authors,	location	(e.g.,	the	journal	the	article	was	published	in),	and
a	brief	abstract	of	each	document	that	cited	my	book.

As	my	example	reveals,	another	limitation	on	the	exhaustiveness	of	searches	based	solely	on	reference
databases	derives	not	from	what	they	contain	but	from	how	they	are	accessed	by	searchers.	Even	if	a
database	were	to	have	exhaustive	coverage	of	the	documents	that	are	relevant	to	your	topic,	you	will	not
necessarily	be	able	to	describe	your	topic	in	a	manner	that	ensures	you	uncover	every	relevant	article	in
it.	The	search	may	not	recall	all	the	wanted	information.	Like	searching	the	Internet,	searchers	must
enter	the	database	by	specifying	search	terms	associated	with	particular	research	topics.	Searchers	who
are	unaware	or	omit	terms	that	apply	to	documents	relevant	to	their	interests	are	likely	to	miss	articles.
All	searchers	make	trade-offs	between	the	likelihood	of	(a)	missing	relevant	documents	and	(b)	including
lots	of	irrelevant	documents.

Determining	the	Adequacy	of	Literature	Searches
The	question	of	which	and	how	many	sources	of	information	to	use	in	a	search	has	no	general	answer.
The	appropriate	sources	will	be	a	function	partly	of	the	topic	under	consideration	and	partly	of	the
resources	available	to	you.	As	a	rule,	however,	searchers	must	always	use	multiple	channels	with	different
entry	and	access	restrictions	so	that	they	minimize	any	systematic	differences	between	studies	that	are
and	are	not	found	by	the	search.	If	a	searcher	has	uncovered	different	studies	through	channels	that	do
not	share	similar	entry	and	access	restrictions,	then	the	overall	conclusions	of	the	synthesis	should	be
replicable	by	someone	else	using	different,	but	also	complementary,	sources	for	primary	research.	This
rule	embodies	the	scientific	principle	of	making	results	replicable.	So,	an	important	question	to	ask	about
the	adequacy	of	the	search	strategy	used	in	a	research	synthesis	is,

Were	complementary	searching	strategies	used	to	find	relevant	studies?

Reference	databases	and	research	registers,	if	they	are	available,	should	form	the	backbone	of	any
comprehensive	literature	search.	These	sources	probably	contain	the	information	most	closely
approximating	all	research.	Typically,	they	cast	the	widest	net.	Their	restrictions	are	known	and	can	be
compensated	for	by	the	use	of	other	complementary	search	strategies.

Earlier	in	this	chapter,	I	mentioned	that	concentrating	on	only	quality-controlled	sources	would	produce	a
set	of	studies	that	overrepresented	statistically	significant	results.	However,	because	these	sources
involve	peer	review,	it	could	be	argued	that	this	research	has	undergone	the	most	rigorous
methodological	appraisal	by	established	researchers	and	probably	is	of	the	highest	quality.	As	we	shall
see	in	Chapter	5,	publication	does	not	ensure	that	only	studies	of	high	quality	will	be	included	in	the
synthesis.	Faulty	studies	often	make	their	way	into	journals.	Also,	well-conducted	studies	may	never	be
submitted	for	publication.

A	focus	on	only	published	research	might	be	legitimate	in	two	circumstances.	First,	published	research
often	contains	several	dozen,	or	in	some	cases	hundreds,	of	relevant	studies.	In	such	an	instance,	it	is
likely	that	while	the	published	research	may	overestimate	the	certainty	with	which	a	null	hypothesis	can
be	rejected	and	the	size	of	the	relationship,	it	probably	will	not	incorrectly	identify	the	direction	of	a
relationship.	The	suggested	magnitude	of	the	relation	can	be	adjusted	for	the	possibility	of	bias	against
null	results.	(I	will	return	to	this	in	Chapter	7.)	Also,	enough	instances	of	a	hypothesis	test	will	be	covered
to	allow	a	legitimate	examination	of	which	study	characteristics	co-vary	with	study	outcomes.

Second,	there	are	many	hypotheses	that	have	multiple	tests	in	the	literature	that	were	not	the	primary
focus	of	the	research.	For	instance,	many	psychological	and	educational	studies	include	the	participants’
sex	as	a	variable	in	the	data	analysis	and	report	hypothesis	tests	of	sex	differences,	although	these	are
only	an	ancillary	interest	of	the	primary	researchers.	The	bias	toward	significant	results	in	publications
probably	does	not	extend	much	beyond	the	primary	hypothesis.	Therefore,	a	hypothesis	that	appears	in
many	publications	as	a	secondary	interest	of	the	researchers	will	be	affected	by	bias	against	null	results
to	a	lesser	degree	than	the	researcher’s	primary	focus.

Generally	speaking,	however,	focusing	on	only	published	studies	is	not	advisable.	The	possibility	of	bias



against	the	null	hypothesis	is	too	great.	In	addition,	you	should	not	restrict	your	search	to	published
outlets	even	if	you	ultimately	decide	to	include	only	published	work	in	your	synthesis.	To	make	a	well-
informed	choice	about	what	to	put	in	and	leave	out,	and	even	to	help	you	decide	what	the	important
issues	are	in	a	field,	you	need	to	have	the	most	thorough	grasp	of	the	literature.

Finally,	the	information	contained	in	channels	involving	personal	contact	with	researchers	is	not	likely	to
reflect	information	gleaned	from	all	potential	sources.	However,	research	found	by	contacting
researchers	directly	likely	will	complement	that	gained	through	other	channels	because	it	is	likely	to
uncover	research	that	is	more	recent.

Problems	in	Document	Retrieval
Depending	on	the	databases	you	use	and	the	nature	of	your	topic	(especially	the	age	of	the	research	you
want	to	retrieve),	once	you	have	your	search	results,	you	will	be	able	to	retrieve	relevant	articles	through
printed	sources	and	the	Internet.	For	some	documents,	typically	older	ones,	you	might	also	have	to	use
microfiche	records,	though	their	use	is	becoming	rare	(if	it	is	still	available	at	all)	because	more	and	more
early	research	reports	are	being	digitized.	Digitization	of	documents	has	made	retrieval	much	easier,	and
as	more	documents	are	stored	and	accessed	online,	you	will	find	retrieval	is	just	a	few	keystrokes	away.
And,	as	I	mentioned	above,	open	access	journals	and	institutional	subscriptions	to	journals	are	making
online	access	to	research	even	easier.

However,	some	deficiencies	in	document	retrieval	procedures	will	frustrate	you	regardless	of	how
thorough	and	careful	you	try	to	be.	Some	potentially	relevant	studies	do	not	become	public	and	defy	the
grasp	of	even	the	most	conscientious	searchers.	Other	documents	you	will	become	aware	of	but	you	will
be	unable	to	obtain.

Every	research	synthesist	will	find	that	some	documents	of	potential	relevance	(based	on	their	title	or
abstract)	cannot	be	obtained	from	their	personal	journals,	institutional	library’s	print	or	microfiche
collections	and	will	not	be	available	electronically.	To	what	lengths	should	you	go	to	retrieve	these
documents?	The	use	of	interlibrary	loans	is	a	viable	route.	Dissertations	and	master’s	theses	can	be
obtained	through	interlibrary	loans,	and	dissertations	can	be	purchased	through	Proquest	UMI.
Contacting	the	primary	researchers	directly	is	another	possibility,	although	personal	contact	often	results
in	only	a	low	rate	of	response.	Whether	or	not	a	primary	researcher	can	be	located	and	induced	to	send	a
document	is	influenced	in	part	by	the	age	of	the	requested	material,	whether	it	is	digitized,	and	the	status
of	the	requester.

In	general,	when	deciding	how	much	effort	should	be	expended	trying	to	retrieve	documents	that	are
difficult	to	obtain,	you	should	consider	(a)	the	likelihood	that	the	needed	document	actually	contains
relevant	information,	(b)	the	percentage	of	the	total	known	documents	that	are	difficult	to	find	and	how
their	results	might	differ	from	the	results	of	studies	you	have,	(c)	the	cost	involved	in	undertaking
extraordinary	retrieval	procedures	(e.g.,	interlibrary	loan	is	cheap,	buying	dissertations	is	expensive),	and
(d)	any	time	constraints	operating	on	you.

The	Effects	of	Literature	Searching	on	Synthesis	Outcomes
At	the	beginning	of	this	chapter	I	mentioned	that	literature	searches	have	two	different	targets—previous
research	and	individuals	or	groups	relevant	to	the	topic	area.	Therefore,	it	is	necessary	for	you	to	address
the	adequacy	of	your	accessed	studies	with	respect	to	each	of	the	targets.	You	must	ask	(a)	how	the
retrieved	studies	might	differ	from	all	studies	and	(b)	how	the	individuals	or	groups	contained	in	retrieved
studies	might	differ	from	all	individuals	or	groups	of	interest.

Much	of	this	chapter	has	dealt	with	how	to	answer	the	first	of	these	questions.	Not	every	study	has	an
equal	chance	of	being	retrieved.	It	is	likely	that	studies	easily	obtained	through	your	retrieval	channels
are	different	from	studies	that	never	become	available.	Therefore,	you	must	give	careful	thought	to	what
the	results	of	inaccessible	studies	might	be	and	how	this	might	differ	from	what	is	found	in	studies	that
have	been	retrieved	(again,	I	return	to	this	topic	in	Chapter	7).

The	synthesist’s	second	population	of	interest,	referring	to	individuals	or	other	basic	units	of	analysis,
injects	a	note	of	optimism	into	the	discussion.	There	is	good	reason	to	believe	research	syntheses	will
pertain	more	directly	to	a	target	population	than	will	the	separate	primary	research	efforts	in	the	topic
area.	The	overall	literature	can	contain	studies	conducted	at	different	times,	on	units	with	different
characteristics,	and	in	different	locations.	A	literature	can	also	contain	research	conducted	under
different	testing	conditions	with	different	methods.	For	certain	problem	areas	containing	numerous
replications,	the	diversity	of	samples	accessible	to	a	synthesist	should	more	closely	approximate	the
target	population	of	the	primary	researcher.

Of	course,	we	must	bear	in	mind	that	the	biases	against	null	results	and	contradictory	findings	may	affect
the	available	samples	of	people	as	well	as	studies.	To	the	extent	that	more	retrievable	studies	are



associated	with	particular	subpopulations	of	elements,	retrieval	biases	will	be	associated	not	only	with
the	outcomes	of	studies,	but	also	with	the	characteristics	of	study	samples.

The	best	way	to	ensure	that	the	sample	of	studies	in	your	syntheses	is	representative	of	all	research	on
your	topic	is	to	conduct	a	broad	and	exhaustive	search	of	the	literature.	While	the	law	of	diminishing
returns	applies	here,	a	complete	literature	search	has	to	include	at	least

A	search	of	reference	databases,
A	perusal	of	relevant	journals,
The	examination	of	references	in	past	primary	research	and	research	syntheses,	and
Personal	contacts	with	active	and	prominent	researchers.

The	more	exhaustive	a	search,	the	more	confident	you	can	be	that	other	synthesists	using	similar,	but
perhaps	not	identical,	sources	of	information	will	reach	the	same	conclusions.	Table	3.4	presents	an
example	of	a	log	that	can	be	used	to	keep	track	of	the	techniques	you	used	to	search	the	literature.	It	is
important	to	keep	track	of	this	information	because	you	will	need	much	of	it	when	you	write	up	your
synthesis	report.

Also,	in	your	analysis	of	your	synthesis’	results,	you	should	present	indices	of	potential	retrieval	bias,	if
they	are	available.	For	instance,	many	research	syntheses	examine	whether	any	difference	exists	in	the
results	of	studies	that	are	published	versus	those	that	are	unpublished.	Others	examine	the	distribution	of
results	to	see	if	they	suggest	that	some	results	are	missing.	Techniques	for	conducting	these	analyses	are
discussed	in	Chapter	7.





Exercises
1.	 Using	the	topic	area	you	identified	in	Chapter	2,	conduct	a	search	of	a	reference	database.	Perform	a	parallel	search	of

another	database	or	the	Internet.	How	are	the	outcomes	different?	Which	was	more	useful	and	time-	and	cost-effective?
2.	 For	a	topic	of	your	choice,	choose	the	channels	you	would	use	to	search	the	literature	and	the	order	in	which	you	would

access	them.	For	each	step	in	the	search,	describe	its	benefits,	limitations,	and	cost-effectiveness,	given	your	topic.

Notes
1.	Another	strategy	would	be	to	start	a	distribution	list	related	to	the	topic	of	interest.	This	strategy	would
take	longer	to	pay	off	but	might	reap	great	rewards	when	it	did	so.

2.	In	some	databases	you	might	run	into	a	distinction	between	natural	language	key	words	or	search
terms	and	controlled	vocabulary.	Natural	language	consists	of	the	words	researchers	and	searchers	use	to
describe	research.	Controlled	vocabulary	consists	of	terms	added	to	document	records	by	the	database
constructors	to	describe	documents.	Today,	the	distinction	will	not	much	change	what	you	do,	but	you
may	be	happy	that	the	controlled	vocabulary	has	been	added	to	the	record	because	it	tends	to	diminish
the	scatter	of	a	literature.



4	Step	3	Gathering	Information	From	Studies

What	procedures	should	be	used	to	extract	information	from	each	study	report?

Primary	Functions	Served	in	the	Synthesis
1.	 To	create	a	coding	frame	for	obtaining	information	from	studies
2.	 To	train	coders
3.	 To	assess	the	accuracy	of	extracted	information

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
1.	 Variations	in	the	information	gathered	from	each	study	might	lead	to	differences	in	what	is	tested	as	an	influence
on	cumulative	results.

2.	 Variations	in	coder	training	might	lead	to	differences	in	entries	on	coding	sheets.
3.	 Variation	in	rules	for	deciding	what	study	results	are	independent	tests	of	hypotheses	might	lead	to	differences	in
the	amount	and	specificity	of	data	used	to	draw	cumulative	conclusions.

Question	to	Ask	When	Evaluating	the	Information	Gathered	From	Each
Study	to	Be	Included	in	a	Research	Synthesis
Were	procedures	used	to	ensure	the	unbiased	retrieval	of	information	from	study	reports?

This	chapter	describes
How	to	construct	a	coding	guide	that	will	gather	the	important	information	about	studies	to	be	included	in	a
research	synthesis
How	to	train	coders	so	the	information	about	studies	will	be	gathered	reliably
Issues	in	judging	whether	separate	outcomes	from	the	same	study	should	be	considered	independent	outcomes
What	to	do	when	information	about	a	study	is	missing

So	far,	you	have	formulated	the	problem	you	want	to	explore	in	your	research	synthesis.	You	know	the
crucial	issues	that	have	come	to	the	attention	of	theorists,	researchers,	and	previous	synthesists.	And
your	literature	search	is	underway.	The	next	step	in	your	synthesis	is	to	begin	the	construction	of	your
coding	guide.	The	coding	guide	is	the	device	you	(and	those	who	are	assisting	you)	will	use	to	gather
information	about	each	study.	Most	of	this	information	will	come	from	the	study	report	itself,	but	some
information	may	come	from	other	sources	as	well.

Inclusion	and	Exclusion	Criteria
I	touched	on	how	you	make	judgments	about	the	relevance	of	studies	when	I	discussed	how	a	problem
gets	defined:	you	tie	conceptual	variables	to	observable	research	operations	and	measurements.	Broadly
defined	concepts	in	a	research	synthesis	will	encompass	more	operational	definitions	than	narrowly
defined	concepts.	After	the	initial	screening	of	studies,	the	coding	guide	you	devise	will	direct	the
retrieval	of	information	from	studies.	The	guide	needs	to	tell	coders	what	characteristics	of	studies	need
to	be	present	for	a	study	to	be	included	in	the	synthesis.	It	is	where	the	conceptual	rubber	hits	the
operational	road.

But	conceptual	relevance	might	not	be	the	only	criterion	you	wish	to	use	for	inclusion	of	studies.	You
might	decide	that	a	study	that	examines	the	hypothesis	or	intervention	of	interest	to	you	conceptually
does	not	match	up	with	other	criteria	you	want	studies	to	meet.	For	example,	you	might	want	to	limit
studies	based	on	when	they	were	conducted.	Our	homework	research	synthesis	excluded	studies
conducted	before	1987.	We	used	this	criterion	because	an	early	synthesis	ended	with	that	year	and	we
did	not	want	our	synthesis	to	cover	overlapping	research.	The	synthesis	on	aerobic	exercise	was	limited
to	studies	that	used	random	assignment	of	participants	to	treatments.	These	were	plentiful	enough	that
limiting	the	synthesis	to	this	type	of	research	design,	the	one	that	allows	the	strongest	causal	inferences,
was	feasible	(more	on	this	in	Chapter	5).	In	addition	to	timeframe	and	study	design,	other	possible
inclusion	or	exclusion	criteria	include	characteristics	of	the	study’s	context	(e.g.,	its	authors,
dissemination	outlet,	funding	source),	participant	sample	(e.g.,	age,	sex,	economic	status,	geographic
location),	and	outcomes	(types	of	measures	and	their	psychometric	characteristics).

Sometimes	inclusion	and	exclusion	criteria	other	than	conceptual	relevance	can	be	applied	before	the
coding	of	studies	even	begins;	it	is	easy	to	identify	and	exclude	studies	that	are	older	than	you	wish.	It	is
also	possible,	however,	that	you	will	begin	coding	studies	and	decide	after	the	fact	that	additional	screens
need	to	be	added.	The	coding	sheet	should	allow	you	to	do	this.	Also,	you	may	decide	that	rather	than
exclude	studies	based	on,	say,	the	country	in	which	they	were	conducted,	you	will	use	this	variation	in



study	context	as	a	possible	moderator	of	study	outcomes.

Developing	a	Coding	Guide
If	the	number	of	studies	involved	in	your	synthesis	is	small,	it	may	not	be	necessary	before	you	begin	to
examine	the	literature	to	have	a	precise	and	complete	idea	about	what	information	to	collect	about	the
studies.	The	relevant	reports,	if	only	a	dozen	or	so	exist,	can	be	retrieved,	read,	and	reread	until	you	have
a	good	notion	of	what	aspects	of	the	studies	would	be	interesting	to	code	or	how	often	the	important
characteristics	suggested	by	others	actually	appear	in	the	studies.	For	example,	you	might	be	interested
in	whether	the	effect	of	homework	is	moderated	by	the	SES	of	students	but	you	find	that	very	few	studies
report	the	SES	of	the	students	taking	part.

Of	course,	if	you	read	the	entire	literature	first	and	then	decide	what	information	to	code	about	each
study,	your	choices	of	codes	are	post	hoc	and	should	not	be	solely	dictated	by	what	your	reading
suggested	will	be	significant	predictors	of	results.	If	you	do	this,	the	proportion	of	significant	results	you
get	might	be	greater	than	if	you	chose	predictors	based	solely	on	their	theoretical	or	practical
importance.	Still,	small	sets	of	studies	allow	you	to	follow	up	on	ideas	that	emerge	only	after	the	studies
have	been	read.	Then,	you	can	return	to	previously	read	studies	to	code	the	new	information	you	did	not
realize	was	important	during	the	first	reading.

If	you	expect	to	uncover	a	large	number	of	studies,	reading	then	rereading	reports	may	be	prohibitively
time-consuming.	In	this	case,	it	is	necessary	to	consider	carefully	what	data	will	be	retrieved	from	each
research	report	before	the	formal	coding	begins.	Of	course,	reading	a	few	randomly	chosen	studies	can
help	you	think	about	information	to	code	and	is	something	you	should	do.	In	fact,	if	you	are	interested	in
conducting	a	research	synthesis,	you	are	probably	already	familiar	with	many	studies	in	the	area.

When	an	area	of	research	is	large	and	complex,	the	construction	of	a	coding	guide	can	be	no	small	task.
The	first	draft	of	a	coding	guide	should	never	be	the	last.	First,	you	need	to	list	all	the	characteristics	of
studies	you	want	to	gather.	Then,	you	need	to	consider	what	possible	values	studies	might	take	on	each
variable.	For	example,	in	a	research	synthesis	of	interventions	to	increase	aerobic	exercise	among	adults,
you	would	certainly	want	to	gather	information	on	the	age	of	participants	and	characteristics	of	the
interventions,	such	as	their	length	and	intensity.	You	might	decide	that	your	definition	of	the	term	adults
includes	people	over	the	age	of	18,	but	participants	still	might	be	much	older	than	this,	which	might
influence	the	effects	of	the	intervention.	So	you	might	want	your	coding	guide	to	help	you	gather
information	on	the	range	in	age	among	participants.	You	might	exclude	studies	involving	adolescents,	but
the	coding	guide	would	still	contain	a	question	about	the	age	of	the	youngest	participant	in	the	study,	one
about	the	oldest	participant,	and	the	mean	and/or	median	age	of	participants.

After	you	have	this	preliminary	set	of	coding	questions	and	response	categories,	you	need	to	show	this
first	draft	to	knowledgeable	colleagues	for	their	input.	They	are	certain	to	suggest	additional	codes	and
response	categories.	They	will	also	point	out	instances	in	which	your	questions	and	responses	are
ambiguous	and	thus	difficult	to	understand.	After	taking	their	advice,	you	should	code	a	few	randomly
selected	studies	using	the	coding	guide.	This	will	add	further	precision	to	questions	and	response
categories.

An	important	rule	in	constructing	a	coding	guide	for	research	synthesis	is	that	when	many	studies	are
involved,	any	information	that	might	possibly	be	considered	relevant	should	be	retrieved	from	the	studies.
Once	data	coding	has	begun,	it	is	exceedingly	difficult	to	retrieve	new	information	from	studies	that	have
already	been	coded.	Some	of	the	information	you	gather	on	the	coding	sheets	may	never	be	examined	in
your	completed	synthesis.	Sometimes,	too	few	studies	will	report	information	about	the	variable	of
interest.	In	other	cases,	studies	will	not	vary	enough	across	values	of	a	characteristic	to	allow	valid
inferences.	For	example,	you	might	include	a	question	about	the	health	status	of	participants	and	discover
that	most	if	not	all	exercise	interventions	have	been	conducted	with	participants	who	have	experienced	a
health	problem.	Still,	it	is	much	less	of	a	problem	to	gather	more	information	with	your	coding	guide	(by
including	a	question	about	health	status)	that	you	may	eventually	find	useful	than	it	is	to	have	to	return	to
reports	to	get	information	that	was	neglected	the	first	time	through.

Information	to	Include	on	a	Coding	Guide
While	the	content	of	every	research	synthesis	coding	guide	will	be	unique	to	the	question	asked,	there	are
certain	broad	types	of	information	that	every	synthesist	will	want	to	gather	from	primary	research
reports.	Here,	I	will	classify	these	types	of	information	into	eight	categories:

1.	 The	report
2.	 The	predictor	or	independent	variable

1.	 If	the	report	describes	an	experimental	manipulation,	information	about	the	manipulated
conditions—that	is,	the	intervention	(such	as	homework	or	exercise	programs)	or	the
independent	variable	(if	the	study	is	testing	basic	theoretical	predictions,	such	as	the	effects	of



task	choice)
2.	 If	the	report	describes	nonmanipulated	predictor	variables,	information	about	how	these	were
collected	and	their	psychometric	characteristics	(e.g.,	the	scales	used	to	measure	participants’
individual	differences	and	attitudes	toward	rape)

3.	 The	setting	in	which	the	study	took	place
4.	 Participant	and	sample	characteristics
5.	 The	dependent	or	outcome	variables	and	how	they	were	measured	(such	as	level	of	achievement,
amount	of	physical	activity,	motivation,	or	rape	myth	acceptance)

6.	 The	type	of	research	design
7.	 Statistical	outcomes	and	effect	sizes
8.	 Coder	and	coding	process	characteristics

In	this	chapter	I	will	focus	on	six	of	the	eight	types	of	information	about	a	study.	I	will	return	to	discuss
how	to	code	research	designs	in	Chapter	5	and	statistical	outcomes	in	Chapter	6,	when	each	of	these
topics	is	covered	in	more	detail.

A	general	coding	guide	will	never	capture	all	the	important	aspects	of	all	studies.	The	questions	that
should	guide	your	construction	of	the	material	to	be	retrieved	from	studies	should	include	the	following:

Are	there	any	theoretical	and	applied	issues	that	need	to	be	captured	in	the	coding?
Do	theories	suggest	what	study	characteristics	might	be	important	and	how	the	studies	might	differ
on	these	characteristics?
Are	there	issues	in	practical	application	that	suggest	that	the	way	studies	are	conducted	could	relate
to	the	impact	of	the	intervention	or	policy?
Are	there	any	methodological	issues	that	have	arisen	in	the	interpretation	of	past	research?
How	might	methods	vary	in	ways	that	could	relate	to	study	outcomes?
Are	there	disputes	in	the	literature	that	relate	to	how	studies	are	conducted?

Finally,	completed	coding	sheets	are	often	characterized	by	numerous	entries	left	unfilled	(I	will	return	to
this	later)	and	notes	in	margins.	Coders	sometimes	will	feel	as	though	they	are	slamming	round	pegs	into
square	holes.	Perfection	is	never	achieved.	Therefore,	it	is	good	practice	to	leave	coders	space	to	make
notes	about	on-the-spot	decisions	they	made.	In	general,	the	rules	for	constructing	a	coding	guide	are
similar	to	rules	used	in	creating	a	coding	frame	for	a	primary	research	effort	(Bourque	&	Clark,	1992);	a
more-detailed	description	of	the	process	in	research	synthesis	can	be	found	in	Wilson	(2009)	and	Orwin
and	Vevea	(2009).

Characteristics	of	the	report.
Table	4.1	provides	an	example	of	a	coding	guide	for	report	characteristics.	My	example	is	set	up	for
coding	on	printed	pages.	If	coders	are	coding	directly	into	a	spreadsheet,	the	response	column	is	not
needed.	It	is	extremely	important,	however,	that	the	spreadsheet	clearly	identify	which	column	is	devoted
to	which	code.	If	you	are	using	a	program,	such	as	Access,	each	coded	variable	can	have	its	own	page	and
coders	can	then	click	the	appropriate	response	box.	Also,	when	coding	directly	into	spreadsheets	you	may
forgo	numbering	many	responses	and	simply	type	the	coded	response	into	the	spreadsheet	cell,	for
example	by	typing	in	“journal”	rather	than	“1”	for	question	R4	below.

Of	course,	if	you	type	responses	directly	into	the	spreadsheet,	spelling	mistakes	will	appear	as	separate
categories	of	response.	On	the	positive	side,	typing	in	responses	can	be	good	for	spotting	errors.	Typing
“journal”	into	a	spreadsheet	column	will	make	it	obvious	if	the	entry	is	in	the	wrong	column,	more	so	than
if	you	are	typing	in	numbers,	which	might	be	used	repeatedly	in	adjacent	columns.



Note	that	an	“R”	is	placed	before	each	question	number	in	the	first	column.	This	was	done	to	distinguish
questions	about	the	report	from	questions	about	other	features	of	the	study,	which	will	be	given	other
letters,	such	as	“I”	for	intervention	characteristics	and	“O”	for	outcome	characteristics.	Doing	this	is
really	a	matter	of	personal	taste:	you	could	also	just	number	the	questions	successively.	Also,	note	that	all
possible	responses	to	each	question	are	listed	below	the	question	and	each	response	is	given	a	number



that	will	be	entered	by	the	coder	into	the	spaces	provided	in	the	second	column.	Some	responses	are
simply	“other.”	This	code	will	be	used	if	the	coder	finds	a	report	characteristic	that	does	not	correspond
to	any	response	listed	above	it.	When	the	“other”	response	is	used,	the	coder	is	asked	to	provide	a	brief
written	description	of	the	characteristic.	Some	of	the	questions	also	provide	a	“can’t	tell”	response.
Coders	will	use	a	question	mark	in	the	response	space	for	“can’t	tell.”	This	makes	it	easy	to	distinguish
missing	information	from	other	coded	values.	I	have	repeated	the	“can’t	tell”	response	in	most	of	the
questions,	but	to	save	space	coders	could	be	instructed	simply	to	use	this	convention	throughout	the
coding	sheet.

You	will	want	to	start	by	giving	each	report	a	unique	identification	number	(Question	R1).	Later,	you	will
also	give	unique	numbers	to	each	study	in	a	report	(if	there	is	more	than	one	study	in	it),	to	each	unique
sample	within	a	study	for	which	separate	data	are	reported,	and	to	each	outcome	reported	within	each
sample.

Next,	you	will	want	to	include	on	your	coding	sheet	enough	information	about	the	first	author	of	the	study
so	that	if	you	later	want	to	group	studies	by	their	author	(perhaps	to	test	whether	different	authors	get
different	results),	you	will	be	able	to	do	so.	In	Table	4.1,	the	first	author’s	name	is	used	for	this	purpose
(Question	R2).	Note	that	this	is	one	of	only	two	responses	in	the	coding	guide	example	that	do	not	use
numbers;	the	other	one	asks	for	the	postal	code	of	the	state	in	which	the	study	was	conducted.

Third,	you	will	want	to	know	the	year	in	which	the	report	appeared.	This	might	be	used	later	to	examine
temporal	trends	in	findings,	or	simply	to	help	uniquely	identify	the	study	(along	with	the	first	author’s
name)	in	summary	tables.

Fourth,	you	will	want	to	describe	the	type	of	report	and	whether	the	report	had	undergone	some	form	of
peer	review	before	it	appeared.	This	information	will	later	be	used	to	test	for	the	possibility	of	publication
bias.	Note	here	that	the	response	categories	are	“mutually	exclusive”	(every	report	should	fall	into	only
one	category)	and	“exhaustive”	(every	report	will	have	a	category).

Finally,	you	might	be	interested	in	what	type	of	organization	produced	the	report	and	whether	the	report
was	done	with	some	type	of	funding	support.	This	information	can	be	critical	if	you	discover	that	the
funders	of	some	studies	might	have	had	a	monetary	or	other	interest	in	whether	studies	had	a	particular
outcome;	an	example	would	be	a	chain	of	gymnasiums	that	supports	a	study	on	the	value	of	exercise	for
older	adults.	If	so,	you	might	want	to	see	if	such	studies	produce	different	results	from	unfunded	studies.
The	importance	of	gathering	this	information	will	depend	on	your	research	problem.

Experimental	conditions,	if	any.
You	will	need	to	describe	carefully	the	details	of	any	experimental	conditions—that	is,	the	intervention	or
independent	variable—if	these	were	part	of	the	study.	This	portion	of	the	coding	guide	describes	the
relevant	operations	that	define	the	experimental	conditions	and	the	categories	that	capture	the	variations
in	how	the	conditions	might	have	been	operationalized.	What	was	experienced	by	people	in	the
experimental	condition?	What	was	the	intensity	and	duration	of	the	intervention?	As	important	as	it	is	to
describe	what	happened	in	the	experimental	condition,	it	is	equally	important	to	describe	how	the	control
or	comparison	group	was	treated.	Was	there	an	alternate	intervention?	If	so,	what	was	it?	If	not,	what	did
participants	in	the	comparison	conditions	do,	or	how	were	controls	obtained?	Differences	among	studies
on	any	of	these	variables	would	be	prime	candidates	for	causes	of	differences	in	study	outcomes.

Table	4.2	provides	some	examples	of	the	types	of	information	that	might	be	gathered	on	a	coding	sheet
for	studies	comparing	students	who	did	homework	with	students	who	did	not	do	homework.	First,	note
that	the	homework	intervention	code	sheet	gives	each	intervention	described	within	the	report	a	unique
study	number.	This	allows	for	the	possibility	that	there	might	be	more	than	one	study	of	homework
described	in	a	single	report,	or	that	there	might	be	more	than	one	homework	intervention	within	the
same	study	(e.g.,	some	students	did	an	hour	of	homework,	other	students	did	a	half	hour,	and	still	others
did	no	homework	at	all).







Note	that	the	second	cell	of	the	second	column	of	the	coding	sheet	(Question	I2)	now	also	asks	coders	to
give	the	page	number	on	which	the	information	was	found	in	the	report.	This	is	a	good	procedure	and
speaks	in	favor	of	using	print	coding	guides.	This	is	an	excellent	procedure	to	follow	when	the	placement
of	information	in	the	report	might	not	be	clear.	(I	did	not	do	this	in	Table	4.1	because	all	the	information
should	be	available	on	the	report’s	title	page	or	front	matter.)	Later,	if	coders	have	concerns	about	how
they	coded	particular	pieces	of	information	or	if	two	coders	disagree	about	a	code,	having	its	location
reported	on	the	coding	sheet	will	ease	the	process	of	finding	the	information	for	checking	and	can	save
much	time.	To	save	space,	I	have	shown	this	only	once	in	the	tables,	but	it	can	appear	for	just	about	every
question.	If	coders	are	working	from	their	own	copies	of	reports,	you	can	also	ask	them	to	circle	or
highlight	(in	a	pdf)	the	place	in	the	report	where	information	was	found	and	put	the	question	number
from	the	coding	guide	on	the	report	as	well.	It	will	then	be	easy	to	see	where	each	code	came	from.

The	next	question	asks	whether	this	homework	intervention	meets	each	of	three	characteristics	that
define	homework.	If	any	of	these	three	are	answered	“no,”	it	might	lead	to	the	study	being	excluded	from
the	analysis.	The	next	five	questions	ask	about	other	characteristics	of	assignments	that	the	synthesists
might	want	to	test	as	moderators	of	the	effects	of	the	homework	intervention.	There	might	be	more	of
these.	Note	that	Question	I3	(i.e.,	“What	was	the	subject	matter	of	assignments?”)	uses	numbers	to
distinguish	seven	different	coded	responses	and	each	is	given	a	“applies,”	or	“does	not	apply),	or	“not
reported”	answer.	The	reason	for	this	is	that	a	homework	assignment	might	cover	any	one	of	the	six
subject	matters	or	any	combination	of	two	or	more.	There	are	dozens	of	such	combinations.	It	would	be
tedious	for	you	and	coders	if	you	listed	them	all	out,	especially	since	you	know	that	most	of	the
combinations	would	never	be	coded.	By	coding	the	subject	matters	using	just	these	seven	codes	(which
still	give	you	precise	information	about	each	study),	you	can	then	examine	how	frequently	each
combination	occurs	and	have	the	computer	create	new	variables	based	on	the	codes.	For	example,	you
might	find	that	most	studies	cover	only	one	subject	matter	but	a	few	cover	both	reading	and	language
arts.	So,	you	could	instruct	the	computer	to	create	a	new	variable	that	has	eight	values,	one	for	each
instance	in	which	only	one	subject	matter	gets	a	1	and	the	others	get	a	0,	a	seventh	in	which	both	reading
and	language	arts	get	a	1,	and	an	eighth	for	all	other	combinations.



Question	(I8)	relates	to	the	fidelity	with	which	the	homework	intervention	was	carried	out.	If	the	way
homework	was	actually	carried	out	in	studies	was	different	from	the	intended	treatment,	this	might	raise
questions	about	whether	the	study	was	a	fair	test	of	homework’s	effects.	For	this	question,	the	coding
sheet	also	provides	a	note	that	is	meant	to	help	the	coder	remember	a	coding	convention	that	was
established	to	clarify	how	to	code	a	study.	In	this	case,	the	meaning	of	“implemented	in	a	similar	manner”
might	be	ambiguous,	so	the	note	clarifies	its	meaning.	Using	these	notes	will	help	ensure	that	different
coders	use	the	guide	in	the	same	manner,	thus	reducing	differences	between	them	(and	also	within	a
particular	coder’s	responses	from	study	to	study).	The	next	question	(I9)	asks	whether	there	was	evidence
that	the	homework	intervention	was	confounded	with	other	differences	in	the	way	the	experimental	and
control	group	were	treated.	If	such	confounds	exist	it	would	compromise	the	study’s	ability	to	draw	causal
inferences	about	the	effects	of	homework.	Answers	to	either	or	both	of	these	questions	might	lead	to	the
study	being	excluded	from	the	synthesis,	or	the	information	might	be	used	to	group	studies	to	see	if	these
characteristics	were	associated	with	study	outcomes.

Questions	I10	and	I11	relate	to	the	control	participants.	Question	I10	asks	about	how	the	control	group
was	treated	and	Question	I11	tries	to	get	at	whether	the	participants	in	each	condition	knew	there	were
other	participants	in	the	study	who	were	being	treated	differently.	If	so,	this	might	have	influenced	how
they	behaved.	Each	of	these	questions	(I10–I11)	relates	to	the	construct	validity	of	the	treatment
manipulation.

Setting	of	the	study.
This	information	most	often	includes	the	geographic	location	of	the	study	(e.g.,	country,	state,	or	part	of
the	country;	urban,	suburban,	or	rural	community).	If	the	studies	have	been	conducted	within	an
institutional	setting—for	example,	schools,	hospitals,	or	gymnasiums—this	information	could	be	gathered
as	well.	Furthermore,	some	studies	will	always	be	conducted	within	institutional	contexts	(e.g.,	homework
studies	always	occur	within	schools),	so	differences	in	institutions	might	be	of	interest	(e.g.,	“Was	it	a
public	or	private	school?,”	“Did	the	school	have	a	religious	affiliation?,”	etc.).	Table	4.3	presents	some
example	questions	related	to	setting	that	might	appear	on	a	homework	code	sheet.

Participants	and	samples.
Another	type	of	information	typically	collected	from	research	reports	concerns	the	characteristics	of	the
participants	included	in	the	primary	research.	This	can	include	the	age,	race	and/or	ethnic	group,	and
social	class	of	participants,	as	well	as	any	restrictions	placed	by	the	primary	researchers	regarding	who
could	participate	in	the	study.	Table	4.4	provides	some	examples	of	participant	and	sample	characteristics
that	might	be	important	in	a	study	of	the	effects	of	homework.	Also,	note	that	yet	another	unique	sample
ID	number	must	be	provided	here	because	some	studies	might	present	information	on	separate	samples
within	the	study.	For	example,	a	study	might	break	out	its	samples	and	results	based	on	whether	students
were	high	achieving	or	average.	To	capture	this	distinction,	each	sample	would	get	a	different	sample
number	and	Question	P2	would	be	answered	differently	for	each	sample.

Predictor	and	outcome	characteristics.
For	studies	that	do	not	involve	experimental	manipulations	but	rather	associate	measured	variables,	one
as	the	predictor	of	another	(e.g.,	individual	differences	predicting	rape	attitudes),	or	for	the	outcomes	of
studies	with	experimental	manipulations	(e.g.,	measures	of	cognitive	functioning	by	adults	after	aerobic
exercise,	or	motivation	after	a	choice	manipulation),	you	will	want	to	retrieve	information	concerning	the
types	of	outcomes	and	whether	they	were	standardized	measures,	and	evidence	about	the	outcomes’
validity	or	reliability,	if	this	information	is	available.



Table	4.5	provides	some	questions	that	might	be	asked	about	the	outcomes	of	a	homework	study.	Note
that	the	first	question	requires,	yet	again,	that	a	unique	number	be	given	to	each	outcome.	So,	we	now
have	a	four-tiered	system	that,	when	the	ID	numbers	are	strung	together,	uniquely	identifies	each
outcome	within	each	sample,	each	sample	within	each	study,	and	each	study	within	each	report.	In	some
studies	outcomes	will	be	reported	for,	say,	more	than	one	grade	level	or	more	than	one	measure	of
achievement.	When	such	a	study	is	uncovered,	the	coder	would	fill	out	separate	sheets	for	each	two-
group	combination.	For	example,	a	study	with	both	a	standardized	test	and	a	class	grade	measure	of
achievement	reported	separately	for	students	in	fifth	grade	and	sixth	grade	would	have	four	outcome
coding	sheets	associated	with	it,	two	each	for	fifth	and	sixth	graders.







Note	as	well	that	it	is	not	just	different	measures	of	the	same	construct	that	can	create	multiple	measures
associated	with	the	same	sample	(within	the	same	study	within	the	same	report).	It	is	also	possible	for
researchers	to	collect	the	same	measure	two	or	more	times.	That	is	one	reason	why	Question	O5	is
included	on	the	outcome	code	sheet.	Also,	researchers	might	collect	data	on	more	than	one	construct.	For
example,	the	homework	synthesis	might	not	have	focused	exclusively	on	achievement	but	might	also	have
collected	outcomes	related	to	study	skills	and/or	attitudes	toward	school.	If	this	were	the	case,	the
outcomes	coding	sheets	would	be	expanded	to	include	questions	and	responses	related	to	measures	of



these	constructs.

The	fourth	question	(O4)	on	the	outcome	code	sheet	relates	to	the	validity	and	reliability	of	the	measure.
These	questions	can	be	phrased	in	lots	of	different	ways,	depending	on	the	level	of	detail	you	wish	to
gather.	The	example	requests	information	that	is	not	very	specific,	asking	the	coders	only	whether	the
measure	reached	an	“acceptable”	level	of	reliability.

Coder	and	coding	characteristics.
The	coding	guide	should	contain	a	section	for	the	coders	to	enter	their	names	or	ID	number	and	the	date
on	which	they	coded	the	study	(see	Table	4.6).	You	might	also	ask	coders	to	state	the	amount	of	time	it
took	for	them	to	code	the	study,	for	accounting	purposes.	In	some	instances,	this	information	might	be
formally	incorporated	into	your	data	files.	This	section	can	also	provide	coders	with	space	to	make	any
narrative	comments	about	the	coding	process	they	want	to	share	with	you.

Low-	and	High-Inference	Codes
Most	of	the	information	requested	in	the	example	coding	guides	might	be	thought	of	as	low-inference
codes.	That	is,	they	require	the	coder	to	locate	the	needed	information	in	the	research	report	and	transfer
it	to	the	coding	sheet.	In	some	circumstances,	coders	might	be	asked	to	make	some	high-inference	codes
about	the	studies.	It	might	have	occurred	to	you	that	there	were	some	inferences	that	coders	were	asked
to	make	on	the	homework	coding	sheets.	For	example,	I	noted	previously	that	coders	using	the	example
guide	for	outcomes	(Table	4.5)	would	be	asked	to	code	whether	the	estimates	attained	for	the	internal
consistency,	test-retest	reliability,	and	other	validity/reliability	estimates	for	measures	were	“adequate”
(Question	O4).	If	left	to	their	own	devices,	the	judgment	of	adequacy	would	indeed	be	a	somewhat
subjective	judgment,	one	that	might	vary	from	coder	to	coder.	However,	if	you	gave	coders	a	threshold
that	defined	“adequate,”	the	need	for	judgment	would	have	been	removed	from	these	questions.	So,	the
question	might	have	been	rephrased	to	ask,	“Was	an	estimate	of	internal	consistency	present?	If	yes,	was
it	above	.8?”	Or	the	coders	might	have	been	asked	to	gather	the	exact	values	of	the	internal	consistency
estimates.	The	exact	values	then	could	be	used	to	test	whether	this	measure	of	the	validity/reliability	of
the	measures	was	related	to	study	outcomes.

Other	high-inference	codes	involve	attempting	to	infer	how	an	intervention	or	experimental	manipulation
might	have	been	experienced	by	the	individuals	presented	with	it.	A	synthesis	by	Carlson	and	Miller
(1987)	provides	a	good	example.	They	summarized	the	literature	on	why	negative	mood	states	seem	to
enhance	the	likelihood	that	people	will	lend	a	helping	hand.	In	order	to	test	different	interpretations	of
this	research,	they	needed	to	estimate	how	sad,	guilty,	angry,	or	frustrated	different	experimental
procedures	might	have	made	participants	feel.	To	do	this,	a	group	of	judges	were	asked	to	read	excerpts
from	the	methods	sections	of	relevant	articles.	The	judges	then	used	a	1	to	9	scale	to	rate	the	“extent	to
which	subjects	feel	specifically	downcast,	sad,	or	depressed	as	a	result	of	the	negative-mood	induction”



(p.	96).	These	judgments	were	then	added	to	the	coding	sheets	for	each	study.

These	high-inference	codes	create	a	special	set	of	problems	for	research	synthesists.	First,	careful
attention	must	be	paid	to	the	reliability	of	high-inference	judgments.	Also,	judges	are	being	asked	to	play
the	role	of	a	research	participant,	and	the	validity	of	role-playing	methodologies	has	been	the	source	of
much	controversy	(Greenberg	&	Folger,	1988).	However,	Miller,	Lee,	and	Carlson	(1991)	empirically
demonstrated	that	high-inference	codes	can	lead	to	valid	judgments	and	can	add	a	new	dimension	to
synthesists’	ability	to	interpret	literatures	and	resolve	controversies.	This	technique	deserves	a	try	if	you
believe	you	can	validly	extract	high-inference	information	from	articles	and	persuasively	explain	your
rationale	for	doing	so	(i.e.,	how	it	will	increase	the	value	of	your	synthesis).

Selecting	and	Training	Coders
The	coding	of	studies	for	a	research	synthesis	is	not	a	one-person	job.	Even	if	a	single	person	eventually
does	gather	information	from	all	the	studies,	the	research	synthesists	must	demonstrate	that	this	person
did	a	good	job	of	data	extraction.	There	is	simply	too	much	room	for	bias	(conscious	or	unconscious),	for
idiosyncratic	interpretation	of	coding	questions	and	responses,	and	for	simple	mechanical	error	for	the
unverified	codes	of	a	single	person	to	be	considered	part	of	a	scientific	synthesis	of	research.	For
example,	Rosenthal	(1978)	looked	at	21	studies	that	examined	the	frequency	and	distribution	of	recording
errors.	These	studies	uncovered	error	rates	ranging	from	0%	to	4.2%	of	all	the	data	recorded;	64%	of	the
errors	in	recording	were	in	a	direction	that	tended	to	confirm	the	study’s	initial	hypothesis	(see	also
Leong	&	Austin,	2006).

Recording	errors	are	not	the	only	source	of	unreliability	in	study	coding.	Sometimes,	codes	cannot	be
reliably	applied	because	the	reports	of	studies	are	not	clear.	Other	times,	ambiguous	definitions	provided
by	the	research	synthesists	lead	to	disagreement	about	the	proper	code	for	a	study	characteristic.	Finally,
as	I	noted	earlier,	the	predispositions	of	coders	can	lead	them	to	favor	one	interpretation	of	an	ambiguous
code	over	another.

Stock	and	colleagues	(Stock,	Okun,	Haring,	Miller,	&	Kinney,	1982)	empirically	examined	the	number	of
unreliable	codings	made	in	a	research	synthesis.	They	had	three	coders	(one	statistician,	and	two	post-
Ph.D.	education	researchers)	record	data	from	30	documents	into	27	different	coding	categories.	Stock
and	colleagues	found	that	some	variables,	such	as	the	means	and	standard	deviations	of	the	ages	of
participants	(a	low-inference	code),	were	coded	with	perfect	or	near-perfect	agreement.	Only	one
judgment,	concerning	the	type	of	sampling	procedure	used	by	the	researchers,	did	not	reach	an	average
coder	agreement	of	80%.

Demonstrating	that	the	coding	definitions	are	clear	enough	to	generate	consistent	data	across	coders	and
that	the	coders	have	extracted	information	from	the	reports	accurately—that	is,	gave	responses	to	the
coding	questions	that	were	little	different	from	those	that	would	have	been	given	by	any	other	coder—will
involve	training	at	least	two	coders.	Doing	so	is	especially	important	if	the	number	of	studies	to	be	coded
is	large	or	if	persons	with	limited	research	training	are	called	on	to	do	the	coding.	It	is	rare	today	to	find	a
research	synthesis	in	which	a	single	coder	gathered	information	from	all	studies—and	any	such	syntheses
are	looked	on	skeptically.	Most	syntheses	involve	at	least	two	coders	gathering	information	from	at	least	a
portion	of	the	studies.	Some	syntheses	involve	teams	of	three	or	more	coders.	In	any	case,	it	is	good
practice	to	treat	the	coding	of	studies	as	if	it	were	a	standard	exercise	in	data	gathering.

Some	synthesists	will	have	every	study	coded	independently	by	more	than	one	coder,	called	double
coding.	The	codes	for	every	study	are	then	compared,	and	discrepancies	are	resolved	in	a	meeting	of	the
coders	or	by	a	third	party.	This	procedure	can	greatly	reduce	potential	bias,	make	evident	different
interpretations	of	questions	and	responses,	and	catch	mechanical	errors.

While	all	synthesists	must	demonstrate	the	reliability	of	their	codes,	how	far	they	can	go	to	ensure
reliability	will	be	a	function	of	the	number	of	studies	to	be	coded,	the	length	and	complexity	of	the	coding
guide,	and	the	resources	available	to	accomplish	the	task.	Clearly,	syntheses	involving	larger	numbers	of
studies	with	complex	coding	sheets	will	require	more	coding	time.	Unless	lots	of	time	is	available,	more
studies	to	code	will	make	it	more	difficult	to	have	every	study	coded	twice.	In	some	cases,	if	there	is
complex	information	to	be	coded,	synthesists	can	decide	to	double	code	some	of	the	information	on	the
coding	sheet	but	not	other	information.	The	synthesists	must	determine	how	to	get	the	most	trustworthy
codes	possible	given	their	limited	resources.

Double	coding	is	not	the	only	way	you	can	enhance	the	reliability	of	codes.	First,	you	can	pick	coders	who
have	the	background	and	interest	needed	to	do	a	good	job.	People	with	lots	of	experience	reading	and
conducting	research	make	better	coders	than	novices.	Training	can	overcome	some	limitations	of
inexperience,	but	not	all.

Second,	coding	sheets	can	be	accompanied	by	coding	guides	that	define	and	explain	distinctions	in	each
study	characteristic.	In	the	examples	given	in	Tables	4.1	through	4.6,	some	of	these	definitions	appear
directly	on	the	coding	sheet.	A	coding	guide	with	other	definitions	and	conventions	for	coding	particular



questions	could	accompany	the	coding	sheets.	The	more,	the	better.

Third,	prior	to	actual	coding,	discussions	and	practice	examples	should	be	worked	through	with	coders.	It
is	important	to	pilot	test	your	coding	guide	using	the	individuals	who	will	actually	do	the	coding.	Use	a
few	research	reports,	preferably	chosen	to	represent	what	you	know	are	diverse	types	of	research
contained	in	the	literature,	and	talk	through	how	the	coding	would	proceed.	The	coders	will	raise
concerns	you	had	not	thought	of,	which	will	lead	to	greater	clarity	in	questions,	responses,	and
conventions	to	use	when	reports	are	unclear.

Fourth,	the	coders	should	gather	information	for	the	same	few	studies	independently	and	share	their
responses	in	a	group.	You	should	discuss	mistakes	with	them.	Even-greater	clarity	in	the	coding	guide	will
result.	At	this	stage	and	during	subsequent	coding,	some	synthesists	will	attempt	to	keep	the	coders
unaware	of	certain	aspects	of	the	studies.	Some	will	remove	information	about	the	study’s	authors	and
affiliation	from	the	report	so	that	coders	will	not	be	influenced	by	any	knowledge	they	may	have	about	the
researchers.	Some	synthesists	have	the	different	sections	of	the	report	coded	by	different	coders	so	that,
for	example,	the	results	of	a	study	do	not	influence	the	ratings	it	might	get	on	the	quality	of	the	study
design.	These	procedures	are	more	important	to	follow	when	(a)	coding	decisions	might	involve	high-
inference	judgments,	(b)	the	research	area	is	distinguished	by	polarized	opinions	and	findings,	and/or	(c)
the	coders	are	themselves	very	knowledgeable	about	the	area	and	might	have	their	own	opinions	about
what	the	results	of	studies	“should”	be.

Estimating	reliability.
Once	these	steps	have	been	completed,	you	are	ready	to	assess	reliability.	This	should	happen	before
coders	are	given	lots	of	studies	to	code	and	again	periodically	during	coding.	It	is	usually	important	to
obtain	numerical	estimates	of	coder	reliability.	There	are	many	ways	to	quantify	coder	reliability	and	it
appears	that	none	is	without	problems	(see	Orwin	&	Vevea,	2009,	for	a	general	review	of	evaluating
coding	decisions).	Two	methods	appear	most	often	in	research	syntheses.	Most	simply,	research
synthesists	will	report	the	agreement	rate	between	pairs	of	coders.	The	agreement	rate	is	the	number	of
agreed-on	codes	divided	by	the	total	number	of	coding	opportunities.	Typically,	the	percentage	of
agreement	will	be	broken	out	by	each	coding	question.	If	the	number	of	codes	is	large,	the	synthesists
may	provide	only	the	range	of	agreement	percentages	and	then	discuss	any	that	might	seem
problematically	low.	For	example,	in	the	synthesis	of	studies	relating	choice	to	intrinsic	motivation,	we
found	that	out	of	a	total	of	8,895	codes,	there	were	256	disagreements;	that	is,	coders	disagreed	2.88%	of
the	time.	The	question	that	gave	coders	the	most	trouble	involved	the	description	of	the	control	group,
with	disagreements	occurring	9.4%	of	the	time	for	this	variable.

Also	useful	is	Cohen’s	kappa,	a	measure	of	reliability	that	adjusts	for	the	chance	rate	of	agreement.	The
value	of	kappa	is	defined	as	the	improvement	over	chance	reached	by	the	coders.	Often	kappa	is
presented	along	with	the	percent	agreement.

As	mentioned	previously,	some	synthesists	will	have	each	study	examined	by	two	coders,	will	compare
codes,	and	then	will	have	discrepancies	resolved	through	discussion	or	by	consulting	a	third	coder.	This
procedure	leads	to	very	high	reliability;	if	it	is	used,	it	often	is	not	accompanied	by	a	quantitative	estimate
of	reliability.	In	order	to	get	an	effective	reliability	for	double	coding,	you	would	have	to	form	two	teams
of	two	coders	and	an	arbiter	and	compare	the	results	of	the	two	teams’	deliberations.	You	can	see	that
this	process	is	unlikely	to	result	in	many	differences	between	the	teams,	as	long	as	the	coding	definitions
are	clear.

Other	synthesists	have	individual	coders	mark	the	codes	they	are	least	confident	about	and	discuss	these
codes	in	group	meetings.	This	procedure	also	leads	to	highly	trustworthy	codes.	Regardless	of	what
techniques	are	used,	the	question	to	ask	when	evaluating	the	methods	of	data	collection	used	to	carry	out
research	syntheses	is,

Were	procedures	used	to	ensure	the	unbiased	and	reliable	(a)	application	of	criteria	to	determine	the
substantive	relevance	of	studies,	and	(b)	retrieval	of	information	from	study	reports?

Transferring	Information	to	the	Data	File
In	the	foregoing	paragraphs,	I	describe	techniques	for	ensuring	that	information	about	each	study	was
correctly	recorded	into	coding	sheets.	I	suggest	that	the	best	way	to	do	this	is	to	have	each	study	coded
by	more	than	one	researcher	and	then	compare	their	codes	to	one	another.	Even	if	the	coders	agree	on
the	coding	sheets,	it	is	good	practice	to	have	two	people	transfer	the	results	from	the	coding	sheets	into
separate	data	files—the	files	that	will	be	used	by	the	computer	when	the	data	are	analyzed.	Then,	these
files	can	be	compared	to	one	another	to	determine	if	any	errors	have	been	made	when	data	were
transferred	from	the	coding	sheets	or	placed	directly	into	the	computer.	If	only	one	coder	is	used,	this
person	can	be	asked	to	do	the	data	entry	twice.	Although	this	task	may	seem	simple,	errors	in	data
transcription	are	to	be	expected,	especially	when	the	task	data	are	complex.	Of	course,	if	a	computer



program	such	as	Access	is	used	that	transfers	codes	directly	into	a	data	set	ready	for	the	computer,	this
type	of	check	is	unnecessary.	However,	the	entries	into	Access	still	need	to	be	checked.

Problems	in	Gathering	Data	From	Study	Reports
In	Chapter	3	I	discussed	some	deficiencies	in	study	retrieval	that	will	frustrate	synthesists	regardless	of
how	thorough	and	careful	they	try	to	be.	Among	these,	some	potentially	relevant	studies	do	not	become
public	and	defy	the	grasp	of	even	the	most	conscientious	search	procedures.	Other	studies	you	will	learn
about	but	will	not	be	able	to	obtain.

Perhaps	the	most	frustrating	occurrence	in	collecting	the	evidence	is	when	synthesists	obtain	primary
research	reports	but	the	reports	do	not	contain	the	needed	information.	Reports	could	be	missing
information	on	study	characteristics,	preventing	the	determination	of	whether	study	outcomes	were
related	to	how	the	study	was	conducted,	or	even	whether	the	study	was	relevant	at	all.	Or	information
could	be	missing	on	statistical	outcomes,	preventing	synthesists	from	estimating	the	magnitude	of	the
difference	between	two	groups	or	the	relationship	between	two	variables.

Imprecise	Research	Reports
Incomplete	reporting	will	be	of	most	concern	to	research	synthesists	who	intend	to	perform	meta-
analyses.	What	should	the	meta-analyst	do	about	missing	data?	Several	conventions	can	be	suggested	to
handle	the	most	common	problems.

Incomplete	reporting	of	statistical	outcomes.
Research	reports	sometimes	lack	important	information	about	the	results	of	statistical	procedures	carried
out	by	the	primary	researchers.	Statistical	data	are	often	omitted	when	the	researcher	was	testing	to
reject	the	null	hypothesis	and	it	is	not	rejected.	Instead	of	giving	the	exact	results	of	the	statistical	test,
the	researchers	simply	say	it	did	not	reach	statistical	significance.	In	these	cases,	the	researchers	are	also
less	likely	to	provide	the	correlation	or	means	and	standard	deviation	associated	with	the	finding.
Sometimes	they	do	not	even	tell	which	direction	the	correlation	or	comparison	of	group	means	was	in.

You	have	limited	options	when	you	know	a	relationship	or	comparison	has	been	tested	but	the	primary
researchers	do	not	provide	the	associated	means	and	standard	deviations,	sample	size,	inference	test
value,	p-level,	or	effect	size.	One	option	is	to	contact	the	researchers	and	request	the	information.	As	I
noted	in	Chapter	3,	the	success	of	this	tactic	will	depend	partly	on	whether	the	researchers	can	be
located	as	well	as	on	the	status	of	the	requester.	The	likelihood	of	compliance	with	the	request	will	also
depend	on	how	easy	it	is	for	the	researchers	to	retrieve	the	information.	There	is	less	chance	a	request
will	be	fulfilled	if	the	study	is	old,	if	the	desired	analyses	are	different	from	those	originally	conducted,	or
if	the	requester	asks	for	a	lot	of	data.

The	chance	of	getting	a	response	from	researchers	will	increase	if	you	can	make	the	request	as	easy	to
fulfill	as	possible.	This	might	include	providing	the	researchers	with	a	table	in	which	they	simply	need	to
plug	in	the	values	you	need.	Never	ask	for	more	information	or	more	detailed	information	than	you	need.
The	more	information	you	ask	for,	the	more	authors	may	worry	that	you	think	they	did	something	wrong
and	suspect	that	you	are	interested	in	more	than	just	including	their	study	in	a	meta-analysis.	(Of	course,
it	is	also	important	to	follow	up	with	authors	if	you	think	you	have	uncovered	an	erroneous	result.)

Another	approach	to	finding	missing	data	is	to	examine	other	documents	that	describe	the	study	being
reported.	For	example,	if	you	have	found	a	journal	article	that	reports	some	but	not	all	the	results	you
need,	but	the	accompanying	Author	Note	says	the	study	was	conducted	as	a	doctoral	dissertation,	it
might	be	that	the	dissertation	itself	contains	the	information.	Often,	dissertations	have	appendixes	that
include	thorough	descriptions	of	results.	Or	some	research	reports	prepared	by	government	agencies	and
contract	research	firms	might	be	written	with	audiences	in	mind	who	will	not	be	interested	in	the	details.
These	organizations	also	might	have	available	more	technical	reports	with	lots	more	information	in	them.

If	you	cannot	retrieve	the	needed	data,	another	option	is	to	treat	the	outcome	as	having	uncovered	an
exact	null	result.	That	is,	for	any	statistical	analysis	involving	the	missing	data,	a	correlation	of	0	is
assumed,	or	the	means	being	compared	are	assumed	to	be	exactly	equal.	It	is	reasonable	to	expect	that
this	convention	has	a	conservative	impact	on	the	results	of	the	meta-analysis.	In	general,	when	this
convention	is	used,	the	cumulative	average	relationship	strength	will	be	closer	to	zero	than	if	the	exact
results	of	nonsignificant	relationships	were	known.	However,	adding	zeros	to	your	data	set	for	missing
values	will	change	the	characteristics	of	your	distribution	of	findings.	For	these	reasons,	it	is	rare	for
meta-analysts	to	use	this	procedure	anymore.

A	fourth	option	is	simply	to	leave	the	comparison	out	of	your	meta-analysis.	This	strategy	will	likely	lead
to	a	higher	average	cumulative	relationship	than	if	the	missing	value	was	known.	All	else	being	equal,
nonsignificant	findings	will	be	associated	with	the	smaller	relationship	estimates	in	a	distribution	of



sampled	estimates.	However,	most	meta-analysts	choose	this	fourth	option,	especially	if	the	number	of
missing	values	is	small	relative	to	the	number	of	known	values.	Also,	if	meta-analysts	can	classify	missing
value	outcomes	according	to	the	direction	of	their	findings—that	is,	if	they	know	which	group	had	the
higher	mean	or	whether	the	correlation	was	positive	or	negative—these	outcomes	can	be	included	in	vote
count	procedures	(discussed	in	Chapter	6).	It	is	possible	to	estimate	the	strength	of	a	relationship	using
vote	counts	(see	Bushman	&	Wang,	2009).	Also,	in	Chapter	7	I	will	discuss	ways	to	test	meta-analytic
results	to	see	whether	the	conclusions	would	be	different	using	different	methods	to	handle	missing	data.
When	statisticians	analyze	the	same	data	using	different	statistical	assumptions,	it	is	called	sensitivity
analysis	(see	Chapter	7).

Incomplete	reporting	of	other	study	characteristics.
Research	reports	also	can	be	missing	information	concerning	the	details	of	study	characteristics	other
than	their	outcomes.	For	example,	reports	might	be	missing	information	on	the	composition	of	samples
(e.g.,	in	a	homework	study	the	students’	economic	background),	the	setting	(e.g.,	whether	the	school	was
in	an	urban,	suburban,	or	rural	community),	or	treatment	characteristics	(e.g.,	the	number	of	homework
assignments	each	week	and	their	length).	Meta-analysts	want	this	information	so	they	can	examine
whether	treatment	effects	or	relationship	magnitudes	are	associated	with	the	conditions	under	which	the
study	was	conducted.

You	have	several	options	when	study	information	of	this	sort	is	missing.	First,	you	can	ask	yourself
whether	the	information	might	be	available	in	sources	other	than	the	research	report.	For	example,	the
homework	coding	guide	contains	a	question	about	whether	the	school	was	in	an	urban,	suburban,	or	rural
community,	and	a	question	on	the	students’	economic	status.	If	you	know	the	school	district	in	which	this
study	took	place,	this	information	might	be	available	on	the	district	or	state	website.	If	information	on	the
psychometric	characteristics	of	measures	is	not	reported,	these	might	be	found	in	reports	on	the
instruments	themselves.

Most	simply,	you	can	leave	the	study	with	missing	information	out	of	the	analysis,	although	it	may	be
included	in	other	analyses	for	which	the	needed	information	is	available.	For	example,	homework	studies
missing	information	on	the	students’	economic	background	(a	frequent	occurrence)	simply	cannot	be
used	in	the	analyses	testing	whether	this	characteristic	influences	the	effect	of	homework,	but	they	can
be	used	in	analyses	looking	at	grade	level,	a	characteristic	rarely	missing	from	reports.

Alternatively,	it	is	sometimes	appropriate	to	assume	that	a	missing	value	suggests	what	the	value	is.	This
will	happen	because	the	researchers	have	assumed	readers	will	take	the	information	for	granted.	For
example,	homework	researchers	are	likely	in	nearly	all	instances	to	mention	if	a	study	was	conducted	in
an	all-boys	or	all-girls	school.	So,	when	the	sex	composition	of	classes	is	not	mentioned,	it	is	probably	safe
to	assume	that	both	boys	and	girls	were	present,	and	perhaps	in	roughly	equal	numbers.	You	might	have
coders	use	“?”	for	this	code	but	then	have	the	computer	consider	this	code	to	mean	“both	boys	and	girls.”
If	you	do	this,	you	should	mention	the	convention	in	your	methods	section	when	you	write	up	your
synthesis.	Also,	if	possible,	you	might	run	this	analysis	twice,	once	with	the	studies	coded	“?”	included
and	once	without.

The	amount	of	concern	a	meta-analyst	should	have	over	missing	study
characteristics	will	depend	partly	on	why	the	data	are	missing.
Some	data	will	be	completely	missing	at	random.	That	is,	there	will	be	no	systematic	reason	why	some
reports	include	information	on	the	characteristic	while	others	do	not.	If	this	is	the	case,	then	the	outcome
of	an	analysis	examining	the	relationship	between	study	outcomes	and	study	characteristics	will	be
unaffected	by	the	missing	data	except,	of	course,	for	a	loss	of	statistical	power.

If	the	reason	data	are	missing	relates	systematically	to	study	outcomes,	or	to	the	values	of	the	missing
data	themselves,	then	the	problem	is	more	serious.	In	this	case,	the	missing	data	might	be	affecting	the
results	of	the	analysis.	For	example,	suppose	health	researchers	are	more	likely	to	report	that	the
participants	in	their	study	were	all	females	or	all	males	if	the	result	indicates	a	significant	effect	of	an
activity	intervention.	Nonsignificant	effects	are	more	often	associated	with	mixed-sex	samples,	but	this	is
unknown	to	the	meta-analyst	because	researchers	who	find	nonsignificant	results	are	less	inclined	to
report	the	sample’s	composition.	In	such	a	case,	the	meta-analyst	would	have	a	hard	time	discovering	the
relationship	between	the	sex	composition	of	the	intervention	study	and	the	magnitude	of	the
intervention’s	effect	(e.g.,	exercise	is	more	or	less	effective	when	groups	are	composed	of	the	same	sex).

Pigott	(2009)	suggests	several	other	strategies	for	dealing	with	missing	study	characteristics.	First,
missing	values	can	be	filled	in	with	the	mean	of	all	known	values	on	the	characteristic	of	interest.	This
strategy	does	not	affect	the	mean	outcome	of	the	cumulative	analysis,	except	to	raise	its	power.	It	is	most
appropriate	when	the	meta-analyst	is	examining	several	study	characteristics	together	in	one	analysis.	In
such	a	case,	a	single	missing	value	may	delete	the	entire	study,	which	might	not	be	desirable.	Second,	the
missing	value	can	be	predicted	using	regression	analysis.	In	essence,	this	strategy	uses	known	values	of
the	missing	variable	found	in	other	studies	to	predict	the	most	likely	value	for	the	missing	data	point.



Pigott	(2009)	describes	several	more-complicated	ways	to	estimate	missing	data.

In	most	instances,	I	would	advise	meta-analysts	to	stick	with	the	simpler	techniques	for	handling	missing
data.	As	techniques	become	more	complex,	more	assumptions	are	needed	to	justify	them.	Also,	when
more-complicated	techniques	are	used,	it	becomes	more	important	to	conduct	sensitivity	analysis.	It	is
always	good	to	compare	results	using	filled-in	missing	values	with	results	obtained	when	missing	values
are	simply	omitted	from	the	analysis.

Identifying	Independent	Comparisons
Another	important	decision	that	must	be	made	when	data	are	being	gathered	involves	how	to	identify
independent	estimates	of	relationship	strength	or	group	differences.	Sometimes	a	single	study	may
contain	multiple	tests	of	the	same	comparison	or	relation.	This	can	happen	for	several	reasons.	First,
more	than	one	measure	of	the	same	construct	might	be	used	by	the	researchers	with	measures	analyzed
separately.	For	example,	a	researcher	of	choice	effects	might	measure	intrinsic	motivation	using	both
participants’	self-reports	and	observations	of	their	activities	during	a	free-play	period.	Second,	measures
of	different	constructs	might	be	taken,	such	as	several	different	personality	variables	all	related	to
attitudes	toward	rape.	Third,	the	same	measure	might	be	taken	at	two	or	more	different	times.	And
finally,	people	in	the	same	study	might	be	broken	out	into	different	samples	and	their	data	analyzed
separately.	This	would	occur,	for	instance,	if	a	rape-attitude	researcher	gave	the	same	measures	to	all
participants	but	then	separately	examined	results	for	males	and	females.	In	all	these	cases,	the	separate
estimates	in	the	same	study	are	not	completely	independent—they	share	methodological	and	situational
influences.	In	the	case	of	the	same	measure	taken	at	different	times,	the	study	results	even	share
influences	contributed	by	having	been	collected	on	the	same	people	with	the	same	measures.

The	problem	of	nonindependence	of	study	results	can	be	taken	even	farther.	Sometimes	a	single	research
report	can	describe	more	than	one	study	conducted	sequentially	by	the	same	research	team	in	the	same
location.	So,	the	two	studies	likely	were	conducted	in	the	same	context	(e.g.,	the	same	laboratory),
perhaps	with	the	same	research	assistants,	and	with	participants	drawn	from	the	same	participant	pool.
Also,	multiple	research	reports	in	the	same	synthesis	often	describe	studies	conducted	by	the	same
principal	investigators.	The	synthesists	might	conclude	that	studies	conducted	by	the	same	researchers	at
the	same	site,	even	if	they	appear	in	separate	reports	over	a	number	of	years,	nevertheless	contain
certain	constancies	that	imply	the	results	are	not	completely	independent.	The	same	primary	researcher
with	the	same	predispositions	may	have	used	the	same	laboratory	rooms	while	drawing	participants	from
the	same	population.

Synthesists	must	decide	when	statistical	results	will	be	considered	independent	tests	of	the	problem
under	investigation.	Several	alternatives	can	be	suggested	regarding	the	proper	unit	of	analysis	in
research	syntheses.

Research	Teams	as	Units
The	most	conservative	way	to	identify	independent	results	uses	the	laboratory	or	researcher	as	the
smallest	unit	of	analysis.	Advocates	of	this	approach	would	argue	that	the	information	value	of	repeated
studies	by	the	same	research	team	is	not	as	great	as	an	equal	number	of	studies	reported	from	separate
teams.	This	approach	requires	the	synthesists	to	gather	all	studies	done	by	the	same	research	team	and
to	come	to	some	overall	conclusion	concerning	the	results	for	that	particular	group	of	researchers.
Therefore,	one	drawback	is	that	this	approach	requires	the	synthesists	to	conduct	syntheses	within
syntheses,	since	decisions	about	how	to	cumulate	results	first	must	be	made	within	research	teams	and
then	again	between	teams.

The	research-team-as-unit	approach	is	rarely	used	in	practice.	It	is	generally	considered	too	conservative
and	too	wasteful	of	information	that	can	be	obtained	by	examining	the	variations	in	results	from	study	to
study,	even	within	the	same	laboratory.	Also,	it	is	possible	to	ascertain	whether	research	teams	are
associated	with	systematic	differences	in	study	outcomes	by	using	the	researchers	as	a	study
characteristic	in	the	search	for	outcome	moderators.

Studies	as	Units
Using	the	study	as	the	unit	of	analysis	requires	the	synthesists	to	make	an	overall	decision	about	the
results	reported	in	an	individual	study.	If	a	single	study	contains	information	on	more	than	one	test	of	the
same	group	comparison	or	relation,	the	synthesists	can	calculate	the	average	of	these	results	and	have
that	represent	the	study.	Alternatively,	the	median	result	can	be	used.	Or	if	there	is	a	preferred	type	of
measurement—for	example,	a	particular	rape-attitude	scale	with	good	measurement	characteristics—this
result	can	represent	the	study.

Using	the	study	as	the	unit	of	analysis	ensures	that	each	study	contributes	equally	to	the	overall	synthesis
result.	For	example,	a	study	estimating	the	relationship	between	rape	attitudes	and	need	for	power	using



two	different	attitude	scales	and	reporting	separately	for	men	and	women	would	report	four
nonindependent	correlations.	Cumulating	these	correlations	(using	one	of	the	techniques	suggested
previously)	so	that	a	single	correlation	represents	this	study	ensures	equal	consideration	will	be	given	to
another	study	with	one	sex	group	and	one	attitude	measure.

Samples	as	Units
Using	independent	samples	as	units	permits	a	single	study	to	contribute	more	than	one	result	if	the	tests
are	carried	out	on	separate	samples	of	people.	For	example,	synthesists	could	consider	statistical	tests	on
males	and	females	within	the	same	study	of	rape	attitudes	as	independent	but	not	consider	as
independent	two	tests	that	used	different	measures	of	the	same	attitude	construct	given	to	the	same
people.

Using	samples	as	independent	units	assumes	that	the	largest	portion	of	the	variance	shared	by	results	in
the	same	study	comes	from	data	collected	on	the	same	participants.	This	shared	variance	is	removed	(by
combining	results	from	different	measures	within	samples)	but	other	sources	of	dependency	(e.g.,
researchers,	settings)	that	exist	at	the	study	level	are	ignored.	If	you	expect	that	the	study	context	may
have	a	large	effect	on	study	outcomes	it	is	best	to	average	sample	sizes	within	studies	before	combining
them	(Borenstein,	Hedges,	Higgins,	&	Rothstein,	2009).	This	is	because	the	contribution	of	the	study	to
estimates	of	the	variance	in	effect	sizes	will	differ	depending	on	whether	samples	or	studies	are	used	as
the	unit	of	analysis.	In	Chapter	6	you	will	learn	about	fixed-effect	models	of	error	(these	do	not	vary
regardless	of	the	unit	of	analysis)	and	random-effects	models	for	error	(these	do).

It	is	also	the	case	that	combining	results	based	on	subsamples	in	one	study	but	whole	samples	in	another
can	be	problematic.	For	example,	if	a	study	of	homework	provides	separate	results	for	fourth	and	fifth
grades,	the	average	effect	of	homework	across	the	two	subsamples	might	be	different	from	the	single
effect	you	might	have	obtained	if	the	study	presented	one	overall	result.	The	overall	effect	in	the	study
can	be	obtained	if	the	group	means,	standard	deviations,	and	sample	sizes	are	available	(Borenstein	et	al.,
2009).	If	you	have	these,	you	can	calculate	them	using	the	Practical	Meta-Analysis	Effect	Size	Calculator
(Wilson,	2015).

When	meta-analysts	calculate	an	average	comparison	or	relationship	across	units,	it	is	good	practice	to
weight	each	independent	unit—be	it	a	sample	within	a	study	or	the	entire	study—by	its	sample	size.	Then,
weightings	are	functionally	equivalent	whether	independent	samples	within	studies	or	entire	studies	are
used	as	units	of	analysis.	For	example,	a	study	with	100	participants	would	be	weighted	by	100	if	the
study	is	used	as	the	unit,	or	its	two	samples	would	each	be	weighted	by	50	if	the	sample	is	used	as	the
unit	(more	will	be	said	about	this	procedure	in	Chapter	6).

Comparisons	or	Estimates	as	Units
The	least	conservative	approach	to	identifying	independent	units	of	analysis	is	to	use	each	individual
group	comparison	or	estimate	of	relationship	strength	as	if	it	were	independent.	That	is,	each	separate
comparison	or	estimate	calculated	by	primary	researchers	is	regarded	as	an	independent	estimate	by	the
research	synthesist.	This	technique’s	strength	is	that	it	does	not	lose	any	of	the	within-study	information
regarding	potential	moderators	of	the	studies’	outcomes.	Its	weakness	is	that	it	is	likely	to	violate	the
assumption	made	in	the	meta-analytic	statistical	procedures	that	the	estimates	are	independent.	Also,	the
results	of	studies	will	not	be	weighted	equally	in	any	overall	conclusion	about	results.	Instead,	studies	will
contribute	to	the	overall	finding	in	relation	to	the	number	of	statistical	tests	contained	in	them,	regardless
of	their	sample	size.	In	the	example	concerning	rape	attitudes	and	the	need	for	power,	the	study	with	four
related	comparisons	(for	two	sexes	on	two	measures)	will	have	four	times	the	influence	on	the	overall
results	as	a	second	study	with	one	comparison	(but	an	equal	total	sample	size).	This	is	generally	not	a
good	weighting	criterion.

Shifting	Unit	of	Analysis
A	compromise	approach	to	identifying	comparisons	is	to	employ	a	shifting	unit	of	analysis.	Here,	each
outcome	is	initially	coded	as	if	it	were	an	independent	event.	Thus,	the	single	study	that	contained	four
estimates	of	the	relationship	between	attitudes	toward	rape	and	the	need	for	power	would	have	four
outcome	coding	sheets	filled	out	for	its	four	results.	Two	of	these	outcome	code	sheets	(the	two	measures)
would	be	linked	to	two	different	sample	code	sheets	(the	two	sexes)	associated	with	this	study.	Then,
when	an	overall	cumulative	result	for	the	synthesis	is	calculated—that	is,	when	the	question,	“What	is	the
overall	relationship	between	attitude	about	rape	and	the	need	for	power?”	is	answered—the	outcome
results	would	first	be	combined	so	that	each	study	(requiring	that	all	four	results	be	combined)	or	each
sample	(combining	the	two	outcomes	for	each	sample)	contributed	equally	to	the	overall	finding.	Of
course,	each	result	should	still	be	weighted	by	its	sample	size.	These	combinations	would	then	be	added
into	the	analysis	across	all	studies.

However,	the	shifting	unit	approach	allows	that	when	examining	potential	moderators	of	the	overall



outcome,	a	study’s	or	sample’s	results	would	be	aggregated	only	within	the	separate	categories	of	the
moderator	variable.	An	example	should	make	this	clearer.	Suppose	you	have	chosen	to	use	studies	as	the
basic	unit	of	analysis.	If	a	rape-attitude	and	need-for-power	study	presented	correlations	for	males	and
females	separately,	this	study	would	contribute	only	one	correlation	to	the	overall	analysis—the	average
of	the	male	and	female	correlations—but	two	correlations	to	the	analysis	of	the	impact	of	sex	on	the	size
of	the	correlation—one	for	the	female	group	and	one	for	the	male	group.	To	take	the	process	one	step
farther,	assume	this	study	reported	different	correlations	between	rape	attitudes	and	need	for	power
within	each	sex	for	two	different	attitude	measures—that	is,	four	correlations	in	all.	Then,	the	two
correlations	for	different	attitude	scales	would	be	averaged	for	each	sex	when	the	analysis	examining	the
moderating	influence	of	sex	was	conducted.	Likewise,	the	two	sex-related	correlations	would	be	averaged
for	each	scale	when	the	type	of	attitude	measure	was	examined	as	a	moderator.

In	effect,	the	shifting-unit	technique	ensures	that	for	analyses	of	influences	on	study	estimates	of
relationship	strength,	a	single	study	can	contribute	one	data	point	to	each	of	the	categories	distinguished
by	the	moderating	variable.	This	strategy	is	a	good	compromise	that	allows	studies	to	retain	their
maximum	information	value	while	keeping	to	a	minimum	any	violation	of	the	assumption	of	independence
of	statistical	tests.	However,	the	approach	is	not	without	problems.	First,	creating	and	recreating	average
effect	sizes	for	analysis	of	each	different	moderator	can	be	time	consuming	and	difficult	in	some
statistical	packages.	Also,	when	the	meta-analysts	wish	to	study	multiple	influences	on	study	outcomes	in
a	single	analysis,	rather	than	one	influence	at	a	time,	the	unit	of	analysis	can	quickly	decompose	into
individual	comparisons.

The	synthesis	of	studies	examining	correlates	of	rape	attitudes	included	65	research	reports	containing
72	studies	with	data	on	103	independent	samples.	Primary	researchers	calculated	a	total	of	479
correlations.	Clearly,	using	the	individual	correlations	as	if	they	were	independent	results	would	grossly
exaggerate	their	cumulative	information	value.	For	the	overall	analysis,	then,	the	103	independent
samples	were	used	as	the	unit	and	all	correlations	were	averaged	within	samples.	However,	an	analysis	of
differences	in	average	correlations	for	different	rape	attitude	scales	was	based	on	108	correlations,
because	five	primary	researchers	had	given	two	scales	to	the	same	sample	of	participants.

Statistical	Adjustment
Gleser	and	Olkin	(2009)	discuss	statistical	solutions	to	the	problem	of	nonindependent	tests.	They
propose	several	procedures	that	statistically	adjust	for	interdependence	among	multiple	outcomes	within
studies	and	for	different	numbers	of	outcomes	across	studies.	The	key	to	successfully	using	these
techniques	lies	in	the	synthesists	having	credible	estimates	of	the	interdependence	of	the	statistical	tests.
For	instance,	assume	a	study	of	correlates	of	rape	attitudes	includes	both	a	measure	of	myth	acceptance
and	victim	blame.	In	order	to	use	the	statistical	techniques,	the	synthesists	must	estimate	the	correlation
between	the	two	scales	for	the	sample	in	this	study.	Data	of	this	sort	often	are	not	provided	by	primary
researchers.	When	not	given,	it	might	be	estimated	from	other	studies	or	the	analysis	could	be	run	with
low	and	high	estimates	to	generate	a	range	of	values.

The	Effects	of	Data	Gathering	on	Synthesis	Outcomes
Variation	in	the	procedures	used	by	research	synthesists	to	gather	information	from	studies	can	lead	to
systematic	differences	in	how	studies	are	represented	in	the	research	synthesis	data	set.	This	in	turn	can
lead	to	differences	in	what	the	synthesists	conclude	about	the	literature.	Variation	can	happen	in	at	least
three	ways.

First,	if	the	synthesists	only	cursorily	detail	study	operations,	their	conclusions	may	overlook	important
distinctions	in	results.	A	conclusion	that	the	synthesis	results	indicate	no	important	influences	on	study
outcomes	can	occur	either	because	no	such	influences	truly	exist	or	because	the	synthesists	missed
representing	important	influences	in	their	data	set.	A	lack	of	overlap	in	the	study	details	considered
relevant	by	different	synthesists	studying	the	same	problem	will	create	variation	in	their	conclusions.
However,	the	notion	that	a	synthesis	leads	to	more	trustworthy	results	if	it	includes	more	tests	of
potential	influences	on	the	overall	synthesis	result	must	be	tempered	by	the	fact	that	the	more	influences
tested,	the	more	likely	it	is	that	chance	alone	will	lead	to	significant	findings.	So,	best	practice	suggests
that	you	be	judicious	in	your	choices	of	what	influences	to	test.	Still,	as	noted	before,	the	coding	guide
should	be	constructed	to	be	exhaustive;	not	everything	coded	needs	to	be	tested.

Second,	synthesists	can	come	to	different	conclusions	about	a	research	literature	because	they	code
studies	with	different	accuracy.	If	two	syntheses	vary	in	how	carefully	variables	are	defined	and	coders
are	trained,	they	likely	will	also	vary	in	the	number	of	errors	in	their	data	sets,	and	possibly	in	their
conclusions	because	of	these	errors.	Clearly,	all	else	being	equal,	the	synthesis	with	the	more	rigorous
coding	procedures	is	the	one	with	more	credibility.

And	finally,	the	conclusions	of	syntheses	can	vary	because	the	synthesists	have	used	different	rules	for
judging	study	results	as	independent	tests	of	the	problem.	Here,	some	synthesists	may	place	greater



importance	on	ensuring	independence	while	others	consider	it	more	valuable	to	extract	as	much
information	as	possible	from	their	data.

Exercises
For	studies	on	a	topic	of	interest	to	you:

1.	 Draw	up	a	preliminary	coding	guide.
2.	 Find	several	reports	that	describe	research	that	is	relevant	to	the	topic.
3.	 Apply	the	coding	guide	to	several	studies,	some	of	which	you	have	not	read	before.



5	Step	4	Evaluating	the	Quality	of	Studies

What	research	should	be	included	or	excluded	from	the	synthesis	based	on	(a)	the	suitability	of	the
methods	for	studying	the	synthesis	question	and/or	(b)	problems	in	research	implementation?

Primary	Function	in	Research	Synthesis
To	identify	and	apply	criteria	that	separate	studies	conducted	in	ways	that	correspond	with	the	research	question	from
studies	that	do	not

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
Variation	in	criteria	for	decisions	about	study	methods	to	include	might	lead	to	systematic	differences	in	which	studies
remain	in	the	synthesis.

Questions	to	Ask	When	Evaluating	the	Correspondence	Between	the
Methods	and	Implementation	of	Individual	Studies	and	the	Desired
Inferences	of	the	Synthesis

1.	 If	studies	were	excluded	from	the	synthesis	because	of	design	and	implementation	considerations,	were	these
considerations	(a)	explicitly	and	operationally	defined	and	(b)	consistently	applied	to	all	studies?

2.	 Were	studies	categorized	so	that	important	distinctions	could	be	made	among	them	regarding	their	research
design	and	implementation?

This	chapter	describes
Problems	with	judging	the	methodological	adequacy	of	primary	research
Different	approaches	to	describing	the	design	and	implementation	of	studies
How	to	identify	studies	that	report	results	so	extreme	that	their	exclusion	from	a	synthesis	may	be	warranted

The	data	evaluation	stage	of	a	scientific	investigation	involves	making	judgments	about	whether
individual	data	points	are	trustworthy	enough	to	be	included	as	part	of	the	findings.	The	researcher	asks,
“Is	this	data	point	(i.e.,	the	study)	a	legitimate	test	of	the	hypothesis	under	consideration?	Or	did
something	happen	while	the	study	was	being	conducted	that	compromised	its	ability	to	speak	to	the
hypothesis?”	Data	evaluation	first	requires	you	to	establish	criteria	for	judging	the	adequacy	of	the
procedures	used	to	gather	the	data	for	testing	the	relationship	of	interest.	Next,	you	must	examine	each
data	point	to	determine	if	any	irrelevancies	or	errors	might	have	affected	it.	Then,	you	must	determine
whether	these	influences	are	substantial	enough	to	dictate	that	the	data	point	either	should	be	dropped
from	your	study	or	interpreted	with	caution.

The	evaluation	of	individual	data	points	must	be	carried	out	whether	the	data	are	the	scores	of	individual
participants	in	primary	research	or	the	outcomes	of	studies	in	a	research	synthesis.	Both	primary
researchers	and	research	synthesists	examine	their	data	looking	for	contaminants	or	other	indicators	that
suggest	the	outcome	for	the	individual	participants	(in	primary	research)	or	individual	studies	(in
research	synthesis)	may	not	be	trustworthy.	Also,	they	look	to	see	if	data	points	are	statistical	outliers.
This	occurs	when	the	value	of	a	data	point	is	so	extreme	relative	to	other	scores	in	the	data	set	that	it	is
unlikely	to	be	a	member	of	the	same	population	of	values.

The	techniques	for	identifying	data	that	might	be	contaminated	by	irrelevancies	are	different	for	the	two
types	of	research.	In	primary	research,	an	individual	participant’s	responses	are	sometimes	discarded
because	the	researcher	has	evidence	that	the	participant	did	not	attend	to	the	appropriate	stimuli	or	that
the	response	instructions	were	misunderstood.	If	deception	or	some	other	form	of	misdirection	was	used
in	the	research,	a	participant’s	data	may	be	discarded	because	the	participant	did	not	believe	the	cover
story	or	deduced	the	hidden	hypothesis.

In	research	synthesis,	there	is	one	important	criterion,	beyond	the	conceptual	relevance	of	the	study,	for
questioning	the	trustworthiness	of	data:	the	degree	to	which	the	study’s	design	and	implementation
permit	you	to	draw	the	inferences	that	guide	your	work.	If	a	study’s	methods	are	not	fully	commensurate
with	your	intended	inferences,	you	can	make	either	a	discrete	decision—whether	to	include	the	study	at
all—or	a	continuous	decision—whether	to	weight	the	study’s	findings	less	than	other	studies.	A	large	part
of	this	chapter	will	be	devoted	to	criteria	for	judging	this	match	between	the	design	and	implementation
of	studies	and	the	inferences	that	can	be	drawn	from	the	study.

You	may	have	noticed	that	I	have	couched	my	discussion	of	judging	a	study’s	research	methods	in	terms
of	the	correspondence	between	what	inferences	the	methods	can	support	and	what	inferences	the
synthesists	want	to	make.	You	may	have	wondered,	“Why	not	simply	talk	about	study	quality?	Aren’t	some



studies	high	quality	and	others	low	quality?”	The	answer	is	that	there	are	certainly	some	criteria	that	can
be	offered	as	indicators	that	one	study	is	of	“higher	quality,”	or	“better,”	than	another.	I	would	suggest
that	the	trustworthiness	of	measurements	may	be	such	a	universal	criterion,	though	what	makes	a
measure	trustworthy	may	differ	greatly	depending	on	the	question	it	is	meant	to	answer.	So,	studies	with
more	valid	measures	can	be	viewed	as	of	higher	quality	regardless	of	whether	the	variable	being
measured	is	achievement,	cognitive	functioning,	or	attitude	toward	rape.

However,	other	criteria	are	more	context	dependent:	they	depend	on	the	type	of	relationship	that	is	under
consideration.	For	example,	a	study	of	the	effects	of	interventions	to	get	adults	to	exercise	more	often
that	randomly	assigns	participants	to	intervention	and	control	conditions	would	be	a	“better”	study	(all
else	being	equal)	of	the	intervention’s	causal	effects	than	one	that	allowed	participants	to	choose	whether
to	engage	in	the	intervention.	Likewise,	a	study	that	begins	with	older	adults	who	chose	to	participate	in
the	intervention	but	then	matched	participants	so	that	the	comparison	and	intervention	groups	were
roughly	equivalent	on	important	third	variables	is	“better”	for	drawing	causal	inferences	than	one	that
used	no	equating	procedure.	On	the	other	hand,	random	assignment	of	participants	is	irrelevant	to	a
study	of	individual	differences	in	rape	attitudes.	While	we	might	want	to	know	whether	these	individual
differences	cause	differences	in	rape	attitudes,	no	one	has	yet	devised	a	method	for	randomly	assigning
people	to	different	sexes,	ages,	or	personalities.	So,	correlational	studies	that	are	of	minimal	value	for
uncovering	causal	relationships	may	be	of	high	value	for	studying	naturally	occurring	associations.	The
“quality”	of	the	study	depends	on	the	question	it	is	being	used	to	answer.

While	it	is	true	that	using	the	term	quality	to	discuss	differences	between	studies’	methods	may	be	good
shorthand,	it	is	not	good	practice	if	it	creates	the	impression	that	one	set	of	quality	criteria	can	be	applied
to	all	studies	regardless	of	the	nature	of	the	inferences	called	for	by	the	problem	under	consideration.	So,
I	will	use	the	term	quality	for	expository	purposes,	but	you	should	keep	in	mind	that	I	am	using	it	in	the
sense	that	high	quality	means	high	correspondence	between	methods	and	desired	inferences.

Problems	in	Judging	Research	Quality

Predispositions	of	the	Judge
Most	social	scientists	agree	that	the	correspondence	between	methods	and	inferences	should	be	the
primary	criterion,	if	not	the	only	criterion	besides	substantive	relevance,	for	decisions	about	how	to	treat
a	study	in	a	research	synthesis.	However,	the	predispositions	of	researchers	about	what	the	outcome	of
studies	should	be	can	have	a	strong	impact	on	how	studies	are	evaluated.	So,	it	is	important	to	examine
the	sources	and	effects	of	synthesists’	prior	beliefs	about	a	research	area.

Almost	every	primary	researcher	and	research	synthesist	begins	an	inquiry	with	expectations	about	its
outcome.	In	primary	research,	methodologists	have	constructed	elaborate	controls	to	eliminate	or
minimize	the	role	of	artifacts	in	producing	results.	Most	notable	among	these	are	controls	for	what	are
termed	experimenter	expectancy	effects—that	is,	techniques	to	ensure	that	the	experimenter	does	not
treat	participants	in	different	conditions	in	such	a	manner	as	to	increase	the	likelihood	that	the
hypothesis	under	consideration	is	confirmed.

In	research	syntheses,	protections	against	expectancy	effects	are	fewer	and	less	foolproof.	As	the
research	is	being	collected,	coded,	and	evaluated,	synthesists	are	most	often	aware	of	the	outcomes	of
the	studies	they	are	considering.	This	leads	to	the	possibility	that	the	evaluation	of	a	research	project’s
methodology	will	be	influenced	by	the	evaluator’s	predisposition	toward	its	outcomes.	The	impact	of
predispositions	on	syntheses	was	so	great	in	the	past	that	it	is	worth	again	quoting	Glass	(1976)	on	the
old	process:

A	common	method	for	integrating	several	studies	with	inconsistent	findings	is	to	carp	on	the	design
or	analysis	deficiencies	of	all	but	a	few	studies—those	remaining	frequently	being	one’s	own	work	or
that	of	one’s	students	or	friends—and	then	advance	the	one	or	two	“acceptable”	studies	as	the	truth
of	the	matter.	(p.	4)

Mahoney	(1977)	performed	an	experiment	that	directly	tested	the	impact	of	predispositions	on	the
evaluation	of	research.	He	sampled	guest	editors	for	the	Journal	of	Applied	Behavior	Analysis	and	asked
them	to	rate	several	aspects	of	a	controlled	manuscript.	Mahoney	found	that	the	methods,	discussion,	and
contribution	of	the	manuscript	were	evaluated	more	favorably	if	the	study	confirmed	the	raters’
predisposition	about	the	results.	In	a	related	study,	Lord,	Ross,	and	Lepper	(1979)	found	that	readers
rated	studies	that	supported	their	attitudes	as	more	methodologically	sound	than	studies	with
counterattitudinal	results.	More	strikingly,	the	undergraduates	who	participated	in	the	Lord	and
colleagues	study	showed	polarization	in	attitudes	despite	the	fact	that	they	all	read	the	same	research
abstracts.	That	is,	even	though	all	participants	read	one	study	that	supported	their	prior	belief	and	one
that	refuted	it,	after	reading	the	two	studies	participants	saw	more	support	for	their	initial	positions.
Nickerson	(1998)	reviews	the	empirical	literature	on	confirmatory	bias.



Thus,	it	appears	that	predispositions	favoring	a	result	can	influence	synthesists’	judgments	about	whether
a	piece	of	research	is	a	good	test	of	the	hypothesis	under	consideration.	If	a	study	disconfirms	the
synthesists’	predispositions,	they	may	be	more	likely	to	find	some	aspect	of	the	study	that	renders	it
irrelevant	or	methodologically	unsound.	On	the	other	hand,	studies	that	confirm	predispositions	may	be
included	although	their	relevance	is	questionable	or	their	methods	are	a	bad	match	for	the	hypothesis.

One	way	to	minimize	the	impact	of	predispositions	on	the	evaluation	of	research	would	be	to	have
information	gathered	from	studies	by	coders	who	are	unaware	of	the	studies’	outcomes.	This	can	be	done
by	having	separate	coders	unfamiliar	with	the	topic	area	code	different	parts	of	the	research	article.	For
example,	one	coder	might	code	the	method	section	of	a	report	while	another	coder	codes	the	results
section.	However,	Schram	(1989)	evaluated	this	“differential	photocopying”	procedure.	She	found	it
created	new	problems	and	did	not	lead	to	much	higher	interrater	reliability.

The	potential	for	coding	study	methods	in	a	way	that	favors	studies	with	results	consistent	with	the
coder’s	predispositions	provides	another	reason	why	it	is	good	practice	to	(a)	make	the	criteria	for	coding
decisions	explicit	before	coding	begins,	and	(b)	have	each	study	coded	by	at	least	two	researchers
working	independently	(see	Chapter	4).	The	first	of	these	procedures	serves	to	minimize	the	chance	that
coders	will	unconsciously	shift	their	evaluative	criteria	to	favor	studies	that	favor	their	expectations	about
results.	The	second	increases	the	chance	that	if	one	coder’s	codes	do	reflect	their	predispositions,	this
can	be	caught	and	fixed	before	the	studies’	information	is	entered	into	the	database.

Judges’	Disagreement	About	What	Constitutes	Research	Quality
Another	problem	with	making	quality	judgments	is	that	even	disinterested	judges	of	research	can
disagree	on	what	is	and	is	not	a	high-quality	study.	For	example,	numerous	demonstrations	have
examined	the	reliability	of	evaluations	made	about	manuscripts	submitted	to	journals	in	the	fields	of
psychology	(Fiske	&	Fogg,	1990;	Scarr	&	Weber,	1978),	education	(Marsh	&	Ball,	1989),	and	medicine
(Justice,	Berlin,	Fletcher,	&	Fletcher,	1994).	These	studies	typically	calculate	some	measure	of	agreement
between	the	recommendations	made	by	manuscript	readers	concerning	whether	a	manuscript	should	be
accepted	for	publication.	Typically,	the	level	of	agreement	is	surprisingly	low.

In	an	interesting	demonstration,	Peters	and	Ceci	(1982)	resubmitted	12	published	articles	to	the	journals
in	which	they	initially	appeared.	The	manuscripts	were	identical	to	the	originals	except	that	the	names	of
the	submitters	were	changed	and	their	affiliations	were	changed	from	high-status	to	low-status
institutions.	Only	three	of	the	twelve	articles	were	detected	as	being	resubmissions.	Of	the	nine	articles
that	completed	the	re-review	process,	eight	were	not	accepted	for	publication.

In	many	respects,	the	judgments	of	manuscript	evaluators	are	more	complex	than	those	of	research
synthesists.	The	manuscript	evaluator	must	consider	several	dimensions	that	do	not	interest	the	research
synthesist,	including	the	interests	of	the	journal’s	readership.	Also,	a	journal	editor	will	sometimes
deliberately	choose	evaluators	who	represent	different	perspectives.	However,	the	editor	still	hopes	that
the	evaluators	will	agree	on	the	disposition	of	the	manuscript.	And,	of	course,	if	perfectly	objective
criteria	were	available	(and	were	employed),	the	evaluators	would	come	to	concurring	decisions.

Some	of	the	differences	between	judgments	by	manuscript	evaluators	and	research	synthesists	were
controlled	in	a	study	conducted	by	Gottfredson	(1978).	He	removed	much	of	the	variability	in	judges’
ratings	that	might	be	due	to	differing	initial	biases	by	asking	authors	to	nominate	experts	competent	to
evaluate	their	work.	Gottfredson	was	able	to	obtain	at	least	two	expert	evaluations	for	each	of	121
articles.	The	experts	evaluated	the	quality	of	the	articles	on	a	three-question	scale	that	left	the	meaning
of	the	term	quality	ambiguous.	An	interjudge	agreement	coefficient	of	r	=	.41	was	obtained.	On	a	36-item
evaluation	scale,	which	tapped	many	explicit	facets	of	research	quality,	an	interjudge	agreement
coefficient	of	r	=	.46	was	obtained.	These	levels	of	agreement	are	probably	lower	than	we	would	hope.

Why	do	overall	judgments	of	quality	differ?	In	addition	to	differences	in	the	judges’	predispositions,	it	is
possible	to	locate	two	other	sources	of	variance	in	quality	judgments:	(a)	the	relative	importance	judges
assign	to	different	research	design	characteristics	and	(b)	how	well	judges	think	a	particular	study	met	a
particular	criterion.	To	demonstrate	the	first	source	of	variance,	I	conducted	a	study	in	which	six	experts
in	school	desegregation	research	were	asked	to	rank	the	importance	of	six	design	characteristics	for
establishing	the	utility	or	information	value	of	a	school	desegregation	study	(Cooper,	1986).	The	six
characteristics	were	(a)	the	experimental	manipulation	(or	in	this	case,	the	definition	of	desegregation),
(b)	the	adequacy	of	the	control	group,	(c)	the	validity	of	the	outcome	measure,	(d)	the	representativeness
of	the	sample,	(e)	the	representativeness	of	the	environmental	conditions	surrounding	the	study,	and	(f)
the	appropriateness	of	the	statistical	analyses.	The	intercorrelations	of	the	rankings	among	pairs	of
experts	varied	from	r	=	.77	to	r	=	−.29,	with	the	average	correlation	being	r	=	.47.	Thus,	it	was	clear	that
judges	differed	in	how	important	they	thought	different	evaluative	criteria	were,	even	before	applying
them	to	particular	studies.

In	sum,	the	studies	of	judges’	assessments	of	methodological	quality	indicate	evaluator	agreement	is	less
than	we	would	like.	One	way	to	improve	the	reliability	of	quality	judgments	would	be	to	add	more	judges



to	the	evaluation	of	any	given	study.	So,	for	example,	a	rating	of	a	study	(or	the	decision	to	include	or
exclude	a	study	from	a	research	synthesis)	based	on	five	judges’	average	ratings	will	correspond	better
with	the	average	rating	of	five	other	judges	(drawn	from	the	same	population	of	judges)	than	will	the
ratings	of	two	judges	with	any	other	two	judges.	However,	it	is	rare	that	such	large	pools	of	judges	can	be
used	to	make	quality	judgments	about	studies	in	a	research	synthesis.	Two	or	three	is	often	the	practical
limit.

Differences	Among	Quality	Scales
I	mentioned	earlier	that	two	sources	of	variance	in	judges’	ratings	were	(a)	the	relative	importance	they
assign	to	different	research	design	characteristics	and	(b)	how	well	they	think	a	particular	study	met	a
particular	criterion.	A	technique	many	research	synthesists	have	used	in	an	attempt	to	address	the	first	of
these	involves	the	use	of	quality	scales.	Here,	the	synthesists	use	a	predeveloped	scheme	that	tells	judges
what	evaluative	dimensions	are	important.	Also,	the	scales	typically	use	a	prearranged	weighting	scheme
so	that	the	same	weight	is	placed	on	a	dimension	of	quality	when	it	is	applied	to	each	study.	The
synthesists	hope	that	by	asking	coders	to	apply	the	same	set	of	explicit	criteria,	it	will	lead	different
coders	to	more	transparent	and	consistent	ratings.	The	goal	of	quality	scales	is	to	take	some	of	the
subjectivity	out	of	the	rating	process.

While	certainly	an	improvement	over	allowing	each	judge	to	determine	his	or	her	own	quality	criteria,
quality	scales	have	met	their	goals	with	limited	success.	In	medical	research,	Jüni,	Witshci,	Bloch,	and
Egger	(1999)	demonstrated	that	quality	scales	may	create	consistency	among	those	using	the	same	scale
but	it	does	not	mean	that	different	scales	will	come	to	the	same	judgments.	Jüni	and	colleagues	applied
25	different	scales	(constructed	by	other	researchers)	to	the	same	set	of	studies	and	then	conducted	25
meta-analyses,	one	using	each	scale.	They	found	that	the	conclusions	of	the	meta-analyses	differed
dramatically	depending	on	the	scale	that	was	used.	For	six	of	the	scales,	the	high-quality	studies
suggested	no	difference	between	a	new	and	old	treatment,	whereas	the	low-quality	studies	suggested	a
significant	positive	effect	for	the	new	treatment.	The	pattern	was	reversed	for	seven	other	quality	scales.
The	remaining	12	quality	scales	resulted	in	conclusions	that	showed	no	difference	between	the	results	of
high-	and	low-quality	studies.	Thus,	even	though	the	quality	scales	may	improve	somewhat	the	reliability
of	judges	using	the	same	scale,	the	validity	of	the	conclusions	they	lead	to	is	still	suspect.

Jeffrey	Valentine	and	I	(Valentine	&	Cooper,	2008)	suggested	several	reasons	why	the	quality	scales	seem
to	lead	to	such	poor	agreement.	First,	just	as	individual	judges	can	disagree	about	what	characteristics	of
research	are	important	for	quality	judgments,	quality	scales	do	not	necessarily	agree	about	this	either.
For	example,	in	the	Jüni	and	colleagues	study,	some	of	the	scales	focused	almost	exclusively	on	the
studies’	ability	to	permit	causal	inferences;	other	scales	addressed	multiple	characteristics,	such	as	the
representativeness	of	the	sample	and	statistical	power.

Second,	most	quality	scales	still	leave	room	for	judges’	subjective	assessments	to	enter	the	evaluation
process.	The	scales	use	terms	such	as	adequate,	appropriate,	and	sufficient	to	describe	design	features
(e.g.,	“Was	the	internal	consistency	of	measures	adequate?”),	without	providing	operational	definitions	for
these	adjectives.	What	may	be	adequate	for	one	judge	may	be	inadequate	for	another.	This	means	that
even	though	the	important	characteristics	are	identified,	the	reliability	of	codes	for	any	single	dimension
will	still	be	less	than	perfect.	It	also	suggests	that	while	identifying	the	characteristics	makes	judgments
more	transparent,	it	is	still	not	perfectly	clear	what	the	criteria	are	for	applying	each	of	the	evaluative
labels.

Third,	similar	to	individual	researchers,	most	scales	apply	different	schemes	to	weight	the	importance	of
different	methodological	characteristics.	Typically,	quality	scales	assign	a	certain	portion	of	the	scale’s
points	to	each	of	the	characteristics.	So,	even	when	scales	use	the	same	characteristics,	there	can	be
variation	among	scales	about	the	importance	that	should	be	assigned	to	each	characteristic.	For	example,
Jüni	and	colleagues	found	that	some	scales	assigned	16	times	more	weight	than	other	scales	to	the	same
design	feature.	Part	of	this	difference	was	explainable	by	the	fact	that	the	scales	used	different	numbers
of	design	features	and	part	to	the	fact	that	the	scale	developers	might	have	valued	the	same	design
feature	differently.

Reliance	on	a	single	score	to	express	quality.
Typically,	the	scores	from	the	various	items	on	a	quality	scale	are	summed	to	a	single	score.	These	were
the	scores	that	Jüni	and	colleagues	(1999)	used	to	categorize	studies	into	high-	and	low-quality	groupings
when	they	did	their	25	meta-analyses.	Valentine	and	Cooper	(2008)	questioned	whether	it	makes	sense	to
reduce	the	evaluation	of	a	study	to	a	single	dichotomous	judgment	(Is	this	study	good	or	bad?)	or	even	to
a	single	continuous	judgment	(What	is	this	study’s	quality	score?).	The	single-score	approach	results	in
one	number	that	is	summed	across	very	different	aspects	of	study	design	and	implementation,	many	of
which	are	not	necessarily	related	to	one	another.	For	example,	there	is	no	necessary	relationship	between
the	process	used	to	assign	participants	to	experimental	conditions	and	the	quality	of	outcome	measures
used	in	a	study.	So,	one	study	of	homework	might	randomly	assign	participants	to	conditions	but	use	a
self-report	of	grades	as	the	measure	of	achievement.	A	second	study	might	use	matching	of	students	who



did	and	did	not	do	homework	on	their	own	but	use	grades	taken	from	student	records.	In	such	a	case,	the
first	study	has	a	stronger	design	for	making	causal	inferences	but	the	second	study	has	a	more	valid
outcome	measure.	When	a	scale	combines	these	two	elements	of	study	design	into	a	single	score,	it	may
obscure	these	important	differences	between	them;	these	two	studies	might	get	identical	or	similar
scores.	If	the	two	studies	produce	different	results,	how	should	we	interpret	this	difference?

A	Priori	Exclusion	of	Research	Versus	A	Posteriori	Examination	of
Research	Differences
The	role	of	predispositions	and	the	disagreement	about	what	characteristics	of	research	design	define
quality	demonstrate	how	subjectivity	intrudes	on	our	attempts	to	be	scientifically	objective.	The	point	is
important	because	research	synthesists	often	debate	whether	or	not	a	priori	judgments	of	research
quality	should	be	used	to	exclude	studies	from	their	work.	This	debate	was	first	captured	in	an	exchange
of	views	between	Hans	Eysenck	(1978)	and	Gene	Glass	and	Mary	Smith	(1978)	concerning	Smith	and
Glass’s	(1977)	early	meta-analysis	of	research	on	psychotherapy.	Smith	and	Glass	synthesized	over	300
studies	examining	the	effectiveness	of	psychotherapy	with	no	a	priori	exclusion	of	studies	due	to
methodology.	Eysenck	felt	this	strategy	represented	an	abandonment	of	scholarship	and	critical
judgment:

A	mass	of	reports—good,	bad,	and	indifferent—are	fed	into	the	computer	in	the	hope	that	people	will
cease	caring	about	the	quality	of	the	material	on	which	the	conclusions	are	based.	.	.	.	“Garbage	in—
garbage	out”	is	a	well-known	axiom	of	computer	specialists;	it	applies	here	with	equal	force.	(p.	517)

Eysenck	(1978)	concluded	that	“only	better	designed	experiments	than	those	in	the	literature	can	bring
us	a	better	understanding	of	the	points	raised”	(p.	517).

Glass	and	Smith	(1978)	made	several	points	in	rebuttal.	First,	they	argued	that	the	poor	design
characteristics	of	different	studies	can	cancel	one	another	out,	if	the	results	of	different	studies	are
consistent.	Second,	as	noted	earlier,	they	stated	that	the	a	priori	quality	judgments	required	to	exclude
studies	are	likely	to	vary	from	judge	to	judge	and	be	influenced	by	personal	biases.	Finally,	Glass	and
Smith	claimed	they	did	not	advocate	the	abandonment	of	quality	standards.	Instead,	they	regarded	the
impact	of	design	quality	on	study	results	as	“an	empirical	a	posteriori	question,	not	an	a	priori	matter	of
opinion”	(Glass	et	al.,	1981,	p.	222).	They	suggested	that	synthesists	thoroughly	code	the	design	aspects,
good	and	bad,	of	each	study	and	then	determine	empirically	(through	meta-analysis)	if,	in	fact,	the
outcomes	of	studies	are	related	to	how	the	studies	were	conducted.

I	suspect	that	the	best	approach	to	the	debate	about	when,	if	ever,	to	exclude	studies	from	a	research
synthesis	is	best	resolved	by	a	combination	of	approaches.	Generally,	the	decision	to	include	or	exclude
studies	on	an	a	priori	basis	requires	you	to	make	an	overall	judgment	of	study	quality	that	is	often
subjective	and	that	others	may	find	unconvincing.	But	there	could	be	instances	in	which	so	many	high-
quality	studies	exist	that	low-quality	studies	can	be	dismissed	without	concern.	This	was	done,	for
example,	in	our	synthesis	of	aerobic	exercise	effects	on	cognitive	functioning.	Enough	studies	that
employed	random	assignment	existed	that	we	could	focus	on	these	studies	alone.	Our	homework
synthesis	found	very	few	random	assignment	studies	so	we	needed	to	include	studies	with	less	ability	to
draw	strong	causal	inferences.	In	this	instance	we	looked	at	whether	students	being	randomly	assigned	to
homework	conditions	was	associated	with	the	study’s	results.	Thus,	it	is	important	that	you	ask	this
question	about	how	a	research	synthesis	was	conducted:

If	studies	were	excluded	from	the	synthesis	because	of	design	and	implementation	considerations,
were	these	considerations	(a)	explicitly	and	operationally	defined	and	(b)	consistently	applied	to	all
studies?

Generally,	however,	it	is	good	practice	to	carefully	enumerate	study	characteristics	and	to	compare	the
results	of	studies	that	used	different	methods	to	determine	if	studies’	methods	and	results	co-vary	with
one	another.	If	it	is	empirically	demonstrated	that	“good”	studies	(i.e.,	studies	that	permit	inferences	most
correspondent	with	the	inferences	you	wish	to	make)	produce	results	different	from	“bad”	studies	(i.e.,
studies	with	methods	inconsistent	with	the	intended	inferences),	the	results	of	the	good	studies	ought	to
be	believed.	In	this	case,	no	harm	is	done	to	the	validity	of	your	inferences	by	looking	at	the	“bad”	studies
and	perhaps	something	is	learned	about	how	to	conduct	future	research.	When	no	difference	in	results	is
found,	it	seems	sensible	to	retain	(some	or	all	of)	the	“bad”	studies	because	they	contain	other	variations
in	methods	(such	as	different	samples	and	locations)	that,	by	their	inclusion,	may	help	you	answer	many
other	questions	surrounding	the	problem	area.	In	most	cases,	letting	the	data	speak—that	is,	including
nearly	all	studies	and	examining	empirically	the	differences	in	results	associated	with	methods—
substitutes	a	discovery	process	for	the	predispositions	of	the	synthesist.	I	will	return	to	this	issue	again
after	I	suggest	a	scheme	for	coding	the	methodological	characteristics	of	studies.



Approaches	to	Categorizing	Research	Methods
The	decision	to	examine	empirically	the	impact	of	methodology	on	research	results	does	not	relieve	you	of
all	evaluation	responsibilities.	You	must	still	decide	what	methodological	characteristics	of	studies	need	to
be	coded.	As	I	pointed	out	previously,	these	decisions	will	depend	on	the	nature	of	the	question	under
scrutiny	and	the	types	of	associated	research.	If	a	problem	has	been	addressed	mainly	through
experimental	manipulations	in	laboratory	settings—for	example,	the	effects	of	choice	on	intrinsic
motivation—a	different	set	of	methodological	characteristics	of	studies	will	be	important	than	if
correlational	designs	are	at	issue,	as	in	studies	of	the	relationship	between	individual	differences	and
attitudes	about	rape.	Two	broad	approaches	to	coding	research	methods	can	be	identified,	though	they
are	rarely	used	in	their	pure	form.	The	first	approach	requires	the	synthesist	to	make	judgments	about
the	threats	to	validity	that	exist	in	a	study.	The	second	approach	requires	the	detailing	of	the	objective
design	characteristics	and	other	methods	of	a	study,	as	described	by	the	primary	researchers.

Threats-to-Validity	Approach
When	Campbell	and	Stanley	(1963)	introduced	the	notion	of	threats	to	validity,	they	literally	transformed
the	social	sciences.	They	suggested	that	a	set	of	extraneous	influences	associated	with	each	research
design	could	be	identified	that	“might	produce	effects	confounded	with	the	experimental	stimulus”	(p.	5).
Different	research	designs	had	different	validity	threats	associated	with	them.	Designs	could	be
compared	according	to	their	inferential	capabilities.	More	importantly,	less-than-optimal	designs	could	be
triangulated	so	that	strong	inferences	could	result	from	multiple	studies	when	the	single	“perfect”	study
could	not	be	performed.

Campbell	and	Stanley’s	(1963)	notion	held	the	promise	of	increased	sensitivity	and	objectivity	in
discussions	of	research	quality.	However,	it	was	not	long	before	some	problems	in	the	application	of	their
scheme	became	apparent.	The	problems	related	to	creating	an	exhaustive	list	of	threats	to	validity	and
identifying	what	the	implication	of	each	threat	might	be.

Initially,	Campbell	and	Stanley	(1963)	proposed	two	broad	classes	of	validity	threats:	internal	validity	and
external	validity.	First,	threats	to	internal	validity	related	to	the	causal	correspondence	between	the
experimental	treatment	and	the	experimental	effect.	To	the	extent	that	this	correspondence	was
compromised	by	deficiencies	in	research	design,	the	ability	to	interpret	a	study’s	results	as	evidence	of	a
causal	relationship	would	be	called	into	question.	Campbell	and	Stanley	listed	eight	threats	to	internal
validity.	The	second	broad	class,	threats	to	external	validity,	related	to	the	generalizability	of	research
results.	Evaluating	external	validity	required	assessing	the	representativeness	of	a	study’s	participants,
settings,	treatments,	and	measurements.	While	the	external	validity	of	a	study	could	never	be	assessed
definitively,	Campbell	and	Stanley	suggested	four	classes	of	threats	to	representativeness.

Bracht	and	Glass	(1968)	offered	an	expanded	list	of	threats	to	external	validity.	They	believed	that
“external	validity	was	not	treated	as	comprehensively	as	internal	validity	in	the	Campbell-Stanley
chapter”	(p.	437).	To	rectify	this	omission,	Bracht	and	Glass	identified	two	broad	classes	of	external
validity:	(a)	population	validity,	referring	to	generalization	to	persons	not	included	in	a	study,	and	(b)
ecological	validity,	referring	to	settings	not	sampled.	They	described	two	specific	threats	to	population
validity,	along	with	10	threats	to	ecological	validity.

Campbell	(1969)	added	an	additional	threat	to	internal	validity,	called	instability,	defined	as	“unreliability
of	measures,	fluctuations	in	sampling	persons	or	components,	autonomous	instability	of	repeated	or
equivalent	measures”	(p.	411).

Next,	Cook	and	Campbell	(1979)	offered	a	list	of	33	specific	threats	to	validity	grouped	into	four	broad
classifications:	to	the	notions	of	internal	and	external	validity	they	added	the	notions	of	construct	validity
and	statistical	conclusion	validity.	The	term	construct	validity	referred	to	“the	possibility	that	the
operations	which	are	meant	to	represent	a	particular	cause	or	effect	construct	can	be	construed	in	terms
of	more	than	one	construct”	(p.	59).	The	term	statistical	conclusion	validity	referred	to	the	power	and
appropriateness	of	the	data	analysis	technique.	And	finally,	Shadish	et	al.	(2002)	updated	the	list	of
threats	categorized	into	the	four	broad	classifications.

From	this	brief	history,	the	problems	in	using	a	strict	threats-to-validity	approach	to	assess	the	quality	of
empirical	studies	should	be	clear.	First,	different	researchers	may	use	different	lists	of	threats.	For
instance,	should	the	threat	of	instability	offered	by	Campbell	(1969)	constitute	one	threat,	as	originally
proposed,	or	several	threats	(e.g.,	low	statistical	power,	unreliability	of	measures),	as	redefined	by
Shadish	et	al.	(2002)?	Or	should	ecological	validity	constitute	one	threat	or	up	to	10	different	threats?	A
second	problem	is	the	relative	weighting	of	threats:	Is	the	threat	involving	historical	confounds	(other
societal	events	that	happened	concurrent	with	the	experimental	manipulation)	weighted	equally	with	the
threat	involving	restricted	generalizability	across	constructs?	Expert	methodologists	may	even	disagree
on	how	a	particular	threat	should	be	classified.	For	instance,	Bracht	and	Glass	(1968)	listed	experimenter
expectancy	effects	as	a	threat	to	external	validity	while	Shadish	et	al.	(2002)	listed	it	as	a	threat	to	the
construct	validity	of	causes.



All	these	problems	aside,	the	threats-to-validity	approach	to	the	evaluation	of	research	still	represents	an
improvement	in	rigor,	and	is	certainly	preferable	to	the	a	priori	single	judgment	of	quality	it	replaces.
Each	successive	list	of	threats	represents	an	increase	in	precision	and	a	deepening	understanding	of	the
relationship	between	research	design	and	inferences.	Also,	the	list	of	validity	threats	gives	the	synthesist
an	explicit	set	of	criteria	to	apply	or	modify.	In	that	sense,	synthesists	who	use	the	threats-to-validity
approach	make	their	rules	of	judgment	open	to	criticism	and	debate.	This	is	a	crucial	step	in	making	the
research	evaluation	process	more	objective.

Methods-Description	Approach
In	the	second	approach	to	evaluating	study	design	and	implementation,	the	synthesist	codes	the	objective
characteristics	of	each	study’s	methods	as	they	are	described	by	the	primary	researchers.	For	example,
experimental	designs—how	comparisons	between	groups	treated	differently	are	constructed—relate
mainly	to	eliminating	threats	to	internal	validity.	Campbell	and	Stanley	(1963)	described	three
preexperimental	designs,	three	true	experimental	designs,	and	ten	quasi-experimental	designs,	and	the
list	of	design	variations	has	been	expanded	several	times	since	(see	Shadish	et	al.,	2002;	or	May,	2012).
So,	in	this	approach,	rather	than	evaluate	the	internal	validity	of	a	study’s	design—an	abstract
assessment	that	could	lead	to	disagreement—the	coder	simply	retrieves	the	design	type	by	matching	the
design	used	in	the	study	to	a	design	on	a	list	of	possibilities.	This	is	a	low-inference	code	that	should	be
fairly	consistent	across	coders;	when	inconsistencies	appear,	it	should	be	fairly	easy	to	resolve
disagreements.	In	most	areas	of	research,	considerably	fewer	than	all	the	available	designs	will	be
needed	to	describe	exhaustively	how	comparisons	were	constructed	in	the	relevant	research.

One	problem	with	the	methods-description	approach	to	evaluating	studies	is	shared	with	the	threats-to-
validity	approach	(and	was	evident	in	the	use	of	quality	scales):	different	synthesists	may	choose	to	list
different	methodological	characteristics.	So,	while	the	methods-description	approach	may	lead	to	more
reliable	coding,	it	does	not	solve	the	problem	of	what	characteristics	to	code	in	the	first	place.

Another	problem	with	the	methods-description	approach	is	that	the	list	of	methodological	characteristics
that	might	need	to	be	coded	can	become	extremely	long.	Remember,	there	are	four	classes	of	threats	to
validity—internal,	external,	construct,	and	statistical	validity—and	each	may	require	the	coding	of
numerous	design	and	implementation	characteristics	to	capture	every	aspect	of	methodology	that	might
influence	whether	the	threat	is	a	concern	in	a	given	study.	And	it	may	not	be	advisable	to	test	every	one	of
these	characteristics	as	a	moderator	of	study	results:	because	the	number	of	tests	would	be	so	large,
some	will	be	significant	by	chance	alone	(i.e.,	the	Type	I	error	rate	will	be	inflated).	So,	there	may	be	a
trade-off	between	the	threats-to-validity	and	methods-description	approaches	involving	parsimony	versus
reliability.

A	judgment	about	the	threat	to	validity	called	low	statistical	power	(related	to	statistical	conclusion
validity)	provides	a	good	example.	A	coder	making	an	overall	judgment	about	whether	a	study	has	a	good
chance	to	reject	a	false	null	hypothesis	must	do	so	by	combining	several	explicit	study	characteristics:
size	of	the	sample,	whether	a	between-	or	within-subjects	design	was	used,	the	inherent	power	of	the
statistical	test	(e.g.,	parametric	versus	nonparametric),	the	number	of	other	sources	of	variance	extracted
in	the	analysis,	and	the	expected	size	of	the	relationship	under	study.	Using	the	threats-to-validity
approach,	two	coders	of	the	same	study	might	disagree	on	whether	a	study	has	low	statistical	power
because	they	weighted	these	factors	differently	or	perhaps	failed	to	consider	the	same	factors.	However,
they	might	agree	perfectly	on	their	codes	of	these	separate	components.	This	speaks	in	favor	of	using	the
methods-description	approach.	But	using	the	methods-description	approach	still	leaves	room	for
subjectivity:	When	is	sample	size	too	small	for	adequate	statistical	power?	And,	if	the	number	of	codes
required	becomes	too	large	(I	listed	five	for	just	one	of	dozens	of	threats	to	validity),	relating	them	all	to
study	outcomes	jeopardizes	the	validity	of	the	results	of	the	research	synthesis;	with	so	many	tests,	a	few
will	be	significant	by	chance.	If	chance	is	playing	a	role	in	generating	significant	findings	in	a	meta-
analysis,	the	pattern	of	results	will	be	difficult	to	interpret.	This	speaks	in	favor	of	using	the	threats-to-
validity	approach.

A	Mixed-Criteria	Approach:	The	Study	DIAD
The	pros	and	cons	of	the	two	approaches	makes	one	wonder	if	there	is	a	way	to	combine	them	that
maximizes	the	strengths	and	minimizes	the	weaknesses	of	each.	In	such	a	strategy,	you	might	code	many
of	the	potentially	relevant	aspects	of	research	methodology	and	perhaps	build	a	scheme	for	explicitly
combining	them	into	judgments	about	the	different	validity	threats,	not	unlike	my	previous	example
regarding	statistical	power.	Some	threats	to	validity	might	have	to	be	coded	directly.	For	instance,	the
threats	to	internal	validity	involving	aspects	of	the	control	group—diffusion	of	treatments,	compensatory
rivalry,	or	resentful	demoralization	of	participants	receiving	the	less	desirable	treatment—are	probably
best	coded	directly	as	threats	to	validity,	though	deciding	whether	they	are	present	or	absent	still	relies
heavily	on	the	description	of	the	study	presented	by	the	primary	researcher	(also,	I	did	this	in	the
example	coding	sheet	Table	4.2	Question	I9).	While	this	mixed-criteria	approach	does	not	remove	all
problems	from	evaluating	studies	(I	will	describe	several	in	the	following	paragraphs),	it	would	be	a	step



toward	the	use	of	explicit	and	objective	quality	criteria	that	also	takes	into	account	the	utility	of	the
resulting	descriptions	of	studies.

Jeffrey	Valentine	and	I	(Valentine	&	Cooper,	2008)	attempted	to	create	an	instrument	for	use	in	research
synthesis	that	evaluated	studies	using	this	mixed-criteria	approach.	The	result	was	called	the	Study
Design	and	Implementation	Assessment	Device,	or	the	Study	DIAD.	The	Study	DIAD	provides	a
framework	for	synthesists	to	build	an	evaluative	scale	unique	to	their	topic	area	and	allows	them	to
choose	from	several	different	levels	of	abstractness	for	describing	the	correspondence	between	a	study’s
methods	and	desired	inferences.	However,	it	requires	the	user	(a)	to	be	detailed	and	explicit	about	the
chosen	criteria,	(b)	to	define	these	criteria	prior	to	beginning	the	evaluation	of	studies,	and	(c)	to	apply
the	criteria	consistently	across	all	studies.	The	Study	DIAD	is	based	on	the	assumption	that	the	user
wants	to	draw	causal	inferences	about	the	effectiveness	of	an	intervention:	For	example,	do	interventions
meant	to	promote	aerobic	exercise	for	adults	cause	improvements	in	participants’	cognitive	functioning?
However,	it	is	divided	into	sections	corresponding	to	the	four	classes	of	validity,	so	it	can	be	used	for
other	types	of	research	as	well.	A	full	exposition	of	the	Study	DIAD	is	available	elsewhere	(see	Valentine
&	Cooper,	2008),	but	a	brief	introduction	should	give	you	an	idea	of	how	it	combines	the	threats-to-
validity	and	methods-description	approaches,	how	it	works,	and	whether	using	it	might	be	appropriate	for
your	synthesis.

At	the	most	abstract	level,	the	Study	DIAD	provides	the	user	with	answers	to	four	global	questions
relating	to	the	construct,	internal,	external,	and	statistical	conclusion	validity	of	a	study:

1.	 Fit	Between	Concepts	and	Operations:	Were	the	participants	in	the	study	treated	and	the	outcomes
measured	in	a	way	that	is	consistent	with	the	definition	of	the	intervention	and	its	proposed	effects?

2.	 Clarity	of	Causal	Inference:	Did	the	research	design	permit	an	unambiguous	conclusion	about	the
intervention’s	effectiveness?

3.	 Generality	of	Findings:	Was	the	intervention	tested	on	participants,	settings,	outcomes,	and
occasions	representative	of	its	intended	beneficiaries?

4.	 Precision	of	Outcome	Estimation:	Could	accurate	estimates	of	the	intervention’s	impact	be	derived
from	the	study	report?

The	term	intervention	is	used	in	the	Study	DIAD	to	stand	for	any	treatment	or	experimental	manipulation.
So,	all	four	of	these	questions	would	be	relevant	to	our	examples	involving	research	on	the	effectiveness
of	homework,	programs	to	increase	aerobic	exercise	among	adults,	and	the	effects	of	choice	on	intrinsic
motivation;	they	all	seek	to	uncover	causal	relationships.	However,	because	the	studies	of	choice	and
intrinsic	motivation	were	conducted	in	laboratories	(with	great	experimental	control),	all	such	studies
should	have	good	internal	validity,	so	Question	2,	“Clarity	of	Causal	Inference,”	likely	could	be	omitted
from	the	Study	DIAD	for	this	synthesis.	Our	fourth	example,	individual	differences	in	attitudes	toward
rape,	is	not	concerned	with	causal	relationships,	so	Question	2	also	would	be	irrelevant	to	assessing	the
correspondence	between	study	methods	and	inferences	in	that	research	synthesis.	The	other	global
questions	on	the	Study	DIAD	are	relevant	to	all	the	examples.

At	a	slightly	more	specific	level,	the	Study	DIAD	decomposes	the	four	global	questions	into	eight
composite	questions.	These	are	presented	in	Figure	5.1.	Here,	the	four	global	questions	are	each	divided
into	two	more-specific	questions.	It	might	have	occurred	to	you	that	the	four	global	or	eight	composite
questions	could	be	used	to	form	a	quality	scale	by	themselves.	In	other	words,	judges	might	simply	be
asked	to	answer	each	of	these	questions	for	each	study	(or	to	give	the	study	a	score	on	a	continuous
measure).	This	would	be	an	example	of	a	pure	threats-to-validity	approach	to	quality	assessment	and
would	exhibit	the	strengths	and	weaknesses	associated	with	such	an	approach.

But	the	Study	DIAD	goes	a	step	farther	by	attempting	to	operationally	define	the	methodological
characteristics	of	studies	that	go	into	answering	each	of	the	eight	composite	and	four	global	questions.
Accomplishing	this	task	requires	that	the	instrument	(a)	identify	the	particular	design	and
implementation	features	that	must	be	considered	when	answering	each	of	the	eight	composite	questions
and	(b)	provide	a	way	(an	algorithm)	to	sum	up	the	chosen	positive	and	negative	methodological	features
to	get	to	the	answers	to	the	eight	(and	then	the	four)	questions.	To	do	this,	the	Study	DIAD	requires
coders	to	answer	about	30	questions	regarding	a	study’s	design	and	implementation.	These	are	presented
in	Table	5.1	with	the	question	number	associated	with	each	indicating	which	global	and	composite
question	that	particular	methodological	feature	is	related	to.

Looking	over	the	questions	in	Table	5.1,	you	might	wonder	how	we	decided	which	aspects	of	design	and
implementation	should	be	represented	in	the	Study	DIAD.	Here,	we	faced	the	same	problem	encountered
by	everyone	who	attempts	to	develop	a	quality	scale.	To	make	these	decisions,	we	first	considered	the
content	of	other	scales	and	many	methods	textbooks	and	articles.	We	then	shared	early	drafts	of	the
Study	DIAD	with	highly	regarded	research	methodologists	and	sought	input	on	the	instrument	at	a	public
meeting	and	on	a	website.	So,	the	consensus	surrounding	the	30-odd	questions	about	study	design	and
implementation	on	the	Study	DIAD	probably	is	higher	than	most	sets	of	such	questions	used	in	most
quality	scales.

Figure	5.1	Eight	Composite	Questions	About	Study	Quality	Taken	From	the	Study	DIAD
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That	said,	you	next	might	also	recognize	that	the	questions	in	Table	5.1	still	involve	some	degree	of
judgment	on	the	part	of	the	coder;	the	30	questions	still	include	terms	like	adequate	and	fully.	So,	the
Study	DIAD	goes	yet	a	step	farther	by	requiring	the	users,	before	the	instrument	is	applied,	to	more
precisely	define	the	terms	listed	in	Table	5.1	that	otherwise	would	be	open	to	varying	interpretations.	The
mechanism	for	doing	this	is	presented	in	Table	5.2,	which	contains	a	document	that	needs	to	be
completed	by	the	research	synthesists	before	the	Study	DIAD	can	be	applied.	The	first	column	contains
the	request	for	the	definitions	of	terms.	Note	that	these	definitions	are	specific	to	the	research	area	under
consideration.	Some	are	highly	related	to	the	specific	content	area,	such	as	the	important	characteristics
of	the	intervention	(Question	1	in	Table	5.2).	Others	might	be	a	bit	more	general	but	still	might	vary	as
functions	of	the	topic.	For	example,	the	criteria	for	the	minimum	acceptable	attrition	(i.e.,	loss	of
participants	from	the	study,	i.e.,	Questions	12	and	13	on	attrition)	probably	have	some	general	boundaries
but	also	might	be	different	for	studies	on,	say,	the	effectiveness	of	homework	and	studies	on	the
effectiveness	of	an	aerobic	exercise	intervention.

Table	5.2	also	shows	in	the	second	column	the	composite	question	that	each	answer	applies	to.	In	the
third	column,	the	table	shows	you	how	the	questions	might	be	answered	by	synthesists	who	were	going	to
apply	the	Study	DIAD	to	studies	about	the	effectiveness	of	homework.	So,	for	example,	the	coders
applying	the	Study	DIAD	to	each	study	of	homework	are	not	asked	to	make	a	decision	about	what	a
minimally	acceptable	internal	consistency	is	for	outcome	measures	(Question	4	in	Table	5.2).	Instead,	the



coders	are	told	that	the	principal	investigators	have	chosen	.60	to	be	the	minimal	acceptable	level	of	this
type	of	reliability.	In	this	way,	all	of	the	judgments	in	the	eight	composite	questions	are	given	operational
definitions.

In	the	final	steps	for	using	the	Study	DIAD,	a	set	of	algorithms	are	applied	to	the	answers	to	the	design
and	implementation	questions	(Table	5.1)	so	that	they	are	combined	to	answer	the	eight	composite
questions	in	Figure	5.1.	Table	5.3	presents	one	of	these	eight	algorithms.	Algorithms	also	exist	for
combining	the	eight	composite	questions	into	the	four	global	questions.	As	an	example,	Table	5.4	shows
the	results	of	applying	the	Study	DIAD	to	a	study	by	McGrath	(1993)	on	the	effects	of	homework	on
academic	achievement.
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For	any	study,	the	Study	DIAD	results	in	three	sets	of	answers	to	questions	about	its	methods,	or	its
quality	for	testing	the	hypothesis	of	interest:	(a)	about	30	design	and	implementation	questions,	(b)	eight
composite	questions,	and	(c)	four	global	questions.	Really,	any	of	these	characterizations	of	the	study	can
be	used	to	judge	the	study	or	to	see	if	features	of	a	study’s	methods	are	related	to	the	study’s	outcome.	In
fact,	if	you	wanted	to	exclude	studies	a	priori	based	on	Study	DIAD	results,	you	could	set	a	minimum
profile	that	the	study	had	to	meet	or	exceed	in	order	to	be	included	in	the	synthesis.	For	example,	the
McGrath	study	might	be	excluded	because	it	got	only	a	“Maybe	yes”	on	Global	Question	2	about	internal
validity	(Table	5.4).
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The	Study	DIAD	is	a	complex	and	time-intensive	instrument	to	apply,	one	that	takes	careful	thought	and
sufficient	training	to	be	used	properly.	But	this	complexity	is	a	reflection	of	the	fact	that	coming	to	careful
and	transparent	decisions	about	research	quality	is	not	a	simple	task.	If	we	acknowledge	this	fact	in	our
work,	then	the	Study	DIAD	has	many	characteristics	to	its	credit.	First,	the	30-odd	characteristics	of	a
study’s	design	and	implementation	that	form	the	core	of	the	instrument	(presented	in	Table	5.1)	were
arrived	at	using	input	from	a	broad	sampling	of	social	science	researchers.	So,	there	is	greater	consensus
that	these	are	the	critical	methodological	features	of	studies	to	consider	when	judging	a	study’s	quality
than	is	the	case	in	other	quality	scales.	Second,	the	fact	that	the	Study	DIAD	requires	that	its	users	make
explicit	their	definitions	of	important	terms	before	it	is	applied	(defined	in	Table	5.2)	means	that	the
meaning	of	these	terms	will	be	clear	to	people	who	read	the	synthesis.	If	there	is	disagreement	about
these	definitions,	then	fruitful	discussions	can	ensue	about	where	the	disagreement	lies.	Third,	the
algorithms	are	made	explicit	for	combining	the	study	design	and	implementation	features	into	answers	to
the	more	abstract	questions	about	quality	(presented	in	Figure	5.1).

You	can	use	the	Study	DIAD	in	several	ways.	Certainly,	it	isbest	to	apply	it	in	its	full	realization.	But,	as
noted	previously,	you	could	also	use	the	global	and/or	composite	questions	to	guide	you	if	you	want	to	use
a	threats-to-validity	approach.	Or	you	could	use	the	30-odd	design	and	implementation	questions	to	guide
your	use	of	a	methods-description	approach.	It	is	a	simple	task	to	transfer	the	30-odd	questions	on	to	a
coding	sheet	similar	to	those	presented	in	Chapter	4.	The	definitions	presented	in	Table	5.2	can	be
incorporated	directly	into	the	coding	definitions.

What	is	most	important	is	that	when	you	are	examining	how	the	issue	of	evaluating	the	design	and
implementation	of	the	constituent	studies	was	handled	in	a	research	synthesis	you	ask	this	question:

Were	studies	categorized	so	that	important	distinctions	could	be	made	among	them	regarding	their
research	design	and	implementation?

Identifying	Statistical	Outliers
Another	aspect	of	evaluating	studies	cannot	occur	until	after	all	of	your	data	have	been	coded	and
entered	into	the	computer	and	a	first	analysis	of	study	results	is	ready	to	be	run.	At	this	point,	the	most
extreme	outcomes	of	the	individual	studies	in	your	data	set	need	to	be	examined	to	see	if	they	are
statistical	outliers.	You	will	want	to	discover	if	the	most	extreme	outcomes	are	so	discrepant	from	the
other	results	that	it	is	unlikely	they	are	actually	members	of	the	same	distribution	of	findings.	For
example,	suppose	you	have	a	set	of	60	correlations	between	the	age	of	the	respondent	to	his	or	her
attitude	about	rape.	Suppose	as	well	that	59	of	the	correlations	range	in	value	from	–.05	to	+.45,	with
positive	values	indicating	that	older	respondents	are	less	accepting	of	rape	than	younger	ones.	However,
the	60th	correlation	is	–.65.	You	can	use	statistical	procedures	and	conventions	to	compare	this	most
extreme	data	point	to	the	overall	sample	distribution.	You	try	to	determine	if	this	most	extreme	study
outcome	is	too	different	from	the	overall	distribution	of	outcomes	to	be	considered	a	part	of	it.

Statistical	outliers	sometimes	occur	because	of	errors	committed	on	your	coding	sheets	or	during	data
transfer.	These	you	can	correct.	Or	outliers	can	appear	because	these	same	types	of	errors	were	made	by
primary	researchers.	These	you	cannot	correct	except	by	asking	the	primary	researchers	to	confirm	the
result	for	you.	Sometimes	the	cause	of	a	data	point	being	a	statistical	outlier	is	unknown.	Still,	research
synthesists	agree	that	something	needs	to	be	done	when	a	data	point	is	so	extreme	that	it	is	unlikely	to	be
a	member	of	the	distribution	of	findings	it	is	being	compared	to.	One	approach	is	simply	to	remove	the
study	from	your	database.	Another	strategy	is	to	reset	the	value	of	the	outcome	to	three	standard
deviations	above	the	mean	or	to	its	next	nearest	neighbor.

As	an	example,	in	the	meta-analysis	of	the	effects	of	choice	on	intrinsic	motivation,	we	applied	Grubbs’
(1950)	test	to	identify	outliers	separately	for	each	outcome	measure.	These	analyses	identified	none,	one,
or	two	outliers	depending	on	the	outcome.	We	could	not	discern	the	cause	of	the	outliers	but	we	set	them
to	their	nearest	neighbor	and	retained	the	study	for	further	analyses.

Barnett	and	Lewis	(1984)	provide	a	thorough	examination	of	ways	to	identify	statistical	outliers	and	ways
to	treat	them	when	found.	Whatever	method	you	choose,	it	is	good	practice	to	look	for	statistical	outliers
and,	when	found,	to	address	them	in	some	manner.	This	is	the	final	step	in	evaluating	the	question	of
whether	a	particular	study	helps	you	get	the	best	answer	to	the	question	that	has	motivated	your
research	synthesis.

Exercises
1.	 Complete	Table	5.2	for	the	topic	of	the	synthesis	you	have	chosen.
2.	 Pick	a	study	that	is	relevant	to	your	topic	and	answer	the	questions	in	Table	5.1.
3.	 Construct	a	method	section	of	a	coding	guide	for	your	research	topic	using	Table	5.1	and	your	responses	to	the

questions	in	Table	5.2.	Pair	up	with	a	classmate	and	apply	the	coding	frame	to	a	study	for	each	other’s	topic.	What
problems	did	you	encounter?	How	would	the	problems	change	the	way	you	would	answer	the	questions	in	Table	5.2?





6	Step	5	Analyzing	and	Integrating	the	Outcomes	of
Studies

What	procedures	should	be	used	to	condense	and	combine	the	research	results?

Primary	Function	in	Research	Synthesis
To	identify	and	apply	procedures	for	(a)	combining	results	across	studies	and	(b)	testing	for	differences	in	results
between	studies

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
Variation	in	procedures	used	to	summarize	and	compare	results	of	included	studies	(e.g.,	narrative,	vote	count,	averaged
effect	sizes)	can	lead	to	differences	in	cumulative	results.

Questions	to	Ask	When	Analyzing	and	Integrating	the	Results	of
Studies

1.	 Was	an	appropriate	method	used	to	combine	and	compare	results	across	studies?
2.	 If	a	meta-analysis	was	performed,	was	an	appropriate	effect	size	metric	used?
3.	 If	a	meta-analysis	was	performed,	(a)	were	average	effect	sizes	and	confidence	intervals	reported	and	(b)	was	an

appropriate	model	used	to	estimate	the	independent	effects	and	the	error	in	effect	sizes?
4.	 If	a	meta-analysis	was	performed,	was	the	homogeneity	of	effect	sizes	tested?
5.	 Were	(a)	study	design	and	implementation	features	along	with	(b)	other	critical	features	of	studies,	including

historical,	theoretical,	and	practical	variables,	tested	as	potential	moderators	of	study	outcomes?

This	chapter	describes
A	rationale	for	the	use	of	meta-analyses
Statistical	methods	used	to	summarize	research	results	including

Counting	study	outcomes
Averaging	effect	sizes
Examining	the	variability	in	effect	sizes	across	studies

Some	practical	issues	in	the	application	of	meta-analytic	procedures
Some	advanced	meta-analytic	procedures

Data	analysis	involves	reducing	the	separate	data	points	collected	by	the	inquirer	into	a	unified	statement
about	the	research	problem.	It	involves	ordering,	categorizing,	and	summarizing	the	data,	as	well	as
performing	inference	tests	that	attempt	to	relate	data	samples	to	the	populations	they	arise	from.
Inferences	made	from	data	analysis	require	that	decision	rules	be	used	to	distinguish	systematic	data
patterns	from	noise	(or	chance	fluctuation).	Although	different	decision	rules	can	be	used,	the	rules
involve	assumptions	about	what	the	target	population	looks	like	(e.g.,	it	is	normally	distributed)	and	what
criteria	(e.g.,	the	threshold	probability	for	declaring	a	finding	statistically	significant)	must	be	met	before
an	existing	pattern	in	the	data	is	said	to	be	reliable.	The	purpose	of	data	analysis	is	to	summarize	and
describe	the	data	in	a	form	that	permits	valid	interpretation.

Data	Analysis	in	Primary	Research	and	Research	Synthesis
Just	as	any	scientific	inquiry	requires	the	leap	from	concrete	operations	to	abstract	concepts,	both
primary	researchers	and	research	synthesists	must	leap	from	patterns	found	in	samples	of	data	to	more-
general	conclusions	about	whether	these	patterns	also	exist	in	the	target	populations.	However,	until	the
mid-1970s,	there	had	been	almost	no	similarity	in	the	analysis	techniques	used	by	primary	researchers
and	research	synthesists.	Primary	researchers	were	obligated	to	present	sample	statistics	and	to
substantiate	any	inferences	drawn	from	their	data	by	providing	the	results	of	statistical	tests.	Most
frequently,	primary	researchers	(a)	compared	sampled	means	to	one	another	or	calculated	other
measures	of	relationship,	(b)	made	the	assumptions	needed	for	conducting	inference	tests	relating	the
sample	results	to	populations,	and	(c)	reported	the	probabilities	associated	with	whether	systematic
differences	in	the	sample	could	be	inferred	to	hold	in	the	target	population	as	well.

Traditional	statistical	aids	to	primary	data	interpretation	have	not	gone	uncriticized.	Some	have	argued
that	significance	tests	are	not	very	informative	since	they	tell	only	what	the	likelihood	is	of	obtaining	the
observed	results	when	the	null	hypothesis	is	true	(e.g.,	Cohen,	1994;	Cumming,	2012).	These	critics	argue
that	in	a	population	of	people,	the	null	hypothesis	is	rarely	if	ever	true	and	therefore	the	significance	of	a
given	test	is	mainly	influenced	by	how	many	participants	have	been	sampled.	Also,	critics	who	are
skeptical	about	the	value	of	null	hypothesis	significance	testing	point	to	limitations	in	the	generalization
of	these	findings	to	the	target	population.	No	matter	how	statistically	significant	a	relation	may	be,	the



results	of	a	study	are	generalizable	only	to	people	like	those	who	participated	in	that	particular	research
effort.

Skepticism	about	the	value	of	statistics	helps	those	who	use	them	refine	their	procedures	and	keep	their
output	in	proper	perspective.	Nonetheless,	most	primary	researchers	use	statistics	and	most	would	feel
extremely	uncomfortable	about	summarizing	the	results	of	their	studies	without	some	assistance	(or
credibility)	supplied	by	statistical	procedures.	Saying,	“I	looked	at	the	group	means	and	they	looked
different	to	me”	is	simply	not	acceptable	in	primary	research.

In	contrast	to	primary	researchers,	until	recently	research	synthesists	were	not	obligated	to	apply	any
statistical	techniques	in	the	interpretation	of	cumulative	results.	Traditionally,	synthesists	interpreted
data	using	intuitive	rules	of	inference	unknown	even	to	themselves.	Analysis	methods	were	idiosyncratic
to	the	perspective	of	that	particular	synthesist.	Therefore,	a	description	of	the	common	rules	of	inference
used	in	research	syntheses	was	not	possible.

The	subjectivity	in	analysis	of	research	literatures	led	to	skepticism	about	the	conclusions	of	many
syntheses.	To	address	the	problem,	methodologists	introduced	quantitative	methods	into	the	synthesis
process.	The	methods	use	the	statistics	contained	in	the	individual	studies	as	the	primary	data	for	the
research	synthesis.

Meta-Analysis
I	suggested	in	Chapter	1	that	the	two	events	that	had	the	greatest	influence	on	state-of-the-art	research
synthesis	are	the	growth	in	the	amount	of	research	and	the	rapid	advances	in	computerized	research
retrieval	systems.	A	third	major	influence	is	the	introduction	of	quantitative	procedures,	called	meta-
analysis,	into	the	research	synthesis	process.

The	explosion	in	social	science	research	focused	considerable	attention	on	the	lack	of	standardization	in
how	synthesists	arrived	at	general	conclusions	from	series	of	related	studies.	For	many	topic	areas,	a
separate	verbal	description	of	each	relevant	study	was	no	longer	possible.	One	traditional	strategy	was	to
focus	on	one	or	two	studies	chosen	from	dozens	or	hundreds.	This	strategy	failed	to	portray	accurately
the	accumulated	state	of	knowledge.	Certainly,	in	areas	where	dozens	or	hundreds	of	studies	exist,
synthesists	must	describe	prototype	studies	so	that	readers	understand	the	methods	used	by	primary
researchers.

However,	relying	on	the	results	of	prototype	studies	to	represent	the	results	of	all	studies	may	be
seriously	misleading.	First,	as	we	have	seen,	this	type	of	selective	attention	is	open	to	confirmatory	bias:
synthesists	may	highlight	only	studies	that	support	their	initial	position.	Second,	selective	attention	to
only	a	portion	of	all	studies	places	little	or	imprecise	weight	on	the	volume	of	available	tests.	Presenting
one	or	two	studies	without	a	cumulative	analysis	of	the	entire	set	of	results	gives	the	reader	no	estimate
of	the	confidence	that	should	be	placed	in	a	conclusion.	Finally,	selectively	attending	to	evidence	cannot
give	a	good	estimate	of	the	strength	of	a	relationship.	As	evidence	on	a	topic	accumulates,	researchers
become	more	interested	in	how	much	of	a	relationship	exists	between	variables	rather	than	simply
whether	a	relationship	exists	at	all.

Synthesists	not	employing	meta-analysis	also	face	problems	when	they	consider	the	variation	between	the
results	of	different	studies.	They	will	find	distributions	of	results	for	studies	sharing	a	particular
procedural	characteristic	but	varying	on	many	other	characteristics.	Without	meta-analysis,	it	is	difficult
to	conclude	accurately	whether	a	procedural	variation	affected	study	outcomes;	the	variability	in	results
obtained	by	any	single	method	likely	will	overlap	with	the	distributions	of	results	of	studies	using	a
different	method.

It	seems,	then,	that	there	are	many	situations	in	which	synthesists	need	to	turn	to	meta-analytic
techniques.	The	application	of	quantitative	inference	procedures	to	research	synthesis	was	a	necessary
response	to	the	expanding	literature.	If	statistics	are	applied	appropriately,	they	should	enhance	the
validity	of	a	synthesis’	conclusions.	Quantitative	research	synthesis	is	an	extension	of	the	same	rules	of
inference	required	for	rigorous	data	analysis	in	primary	research.	If	primary	researchers	must	specify
quantitatively	the	relation	of	the	data	to	their	conclusions,	the	next	users	of	the	data	should	be	required
to	do	the	same.	The	inference	procedure	that	sounded	so	ludicrous	in	the	context	of	a	single	study	(“The
means	looked	different	to	me”)	is	no	less	so	in	the	context	of	research	synthesis.

Meta-Analysis	Comes	of	Age
Early	on,	meta-analysis	was	not	without	its	critics,	and	some	criticisms	persist.	Initially,	the	value	of
quantitative	synthesis	was	questioned	along	lines	similar	to	criticisms	of	primary	data	analysis	(e.g.,
Barber,	1978;	Mansfield	&	Bussey,	1977).	However,	much	of	the	criticism	stemmed	less	from	issues	in
meta-analysis	than	from	inappropriate	aggregation	procedures	that	are	more	general,	such	as	a	lack	of
attention	to	moderating	variables,	that	were	incorrectly	thought	to	be	caused	by	the	use	of	quantitative
combining	procedures	when	they	were	really	independent	(and	poor)	decisions	on	the	part	of	the



research	synthesists.	I	will	return	to	criticism	of	meta-analysis,	and	rigorous	research	synthesis	in
general,	in	the	final	chapter.

Meta-analysis	is	now	an	accepted	procedure	and	its	application	within	the	social	and	medical	sciences	is
on	the	ascent.	Today,	literally	thousands	of	meta-analyses	have	been	published,	and	the	number	published
each	year	continues	to	grow	larger.	Figure	6.1	presents	some	evidence	of	this	increasing	impact	in	the
sciences	and	social	sciences.	The	figure	is	based	on	entries	in	the	Web	of	Science	Core	Collection
(retrieved	April	3,	2015).	It	charts	the	growth	in	the	number	of	documents	retrieved	by	using	the	topics
“research	synthesis,”	“systematic	review,”	“research	review,”	“literature	review,”	and/or	“meta-analysis”
for	even-numbered	years	from	1996	to	2014.	The	figure	indicates	that	the	total	number	of	references	has
risen	every	year	without	exception	and	is	accelerating.	Clearly,	the	role	that	research	syntheses	and	meta-
analysis	play	in	our	knowledge	claims	is	large	and	growing	larger.

When	Not	to	Do	a	Meta-Analysis
Much	of	this	chapter	will	describe	some	basic	meta-analysis	procedures	and	how	they	are	applied.
However,	it	is	important	to	state	explicitly	some	circumstances	for	which	the	use	of	quantitative
procedures	in	research	syntheses	is	not	appropriate.

First,	quantitative	procedures	are	applicable	only	to	research	syntheses,	not	to	literature	reviews	with
other	foci	or	goals	(see	Chapter	1).	For	instance,	if	a	literature	reviewer	is	interested	in	tracing	the
historical	development	of	the	concept	“intrinsic	motivation,”	it	would	not	be	necessary	for	him	or	her	to
do	a	quantitative	synthesis.	However,	if	the	synthesist	also	intended	to	make	inferences	about	whether
different	definitions	of	intrinsic	motivation	lead	to	different	research	results,	then	a	quantitative	summary
of	relevant	research	would	be	appropriate.	Also,	meta-analysis	is	not	called	for	if	the	goal	of	the	literature
review	is	to	critically	or	historically	appraise	the	research	study	by	study	or	to	identify	particular	studies
that	are	central	to	a	field.	In	such	instances,	a	proper	integration	likely	would	treat	the	results	of	studies
as	an	emerging	series	of	events—that	is,	it	would	use	a	historical	approach	to	organizing	the	literature
review	rather	than	a	statistical	aggregation	of	the	cumulative	findings.	However,	if	the	synthesists	are
interested	in	whether	the	results	of	studies	change	over	time,	then	meta-analysis	would	be	appropriate.

Figure	6.1	Web	of	Science	Core	Collection	Frequency	of	References	to	“Research	Synthesis,”	or
“Systematic	Review,”	or	“Research	Review,”	or	“Literature	Review,”	or	“Meta-Analysis”

Second,	the	basic	premise	behind	the	use	of	statistics	in	research	syntheses	is	that	a	series	of	studies
address	an	identical	conceptual	hypothesis.	If	the	premises	of	a	literature	review	do	not	include	this
assertion,	then	there	is	no	need	for	cumulative	statistics.	Related	to	this	point,	a	synthesist	should	not
quantitatively	combine	studies	at	a	broader	conceptual	level	than	readers	would	find	useful.	At	an
extreme,	most	social	science	research	could	be	categorized	as	examining	a	single	conceptual	hypothesis
—social	stimuli	affect	human	behavior.	Indeed,	for	some	purposes	such	a	hypothesis	test	might	be	very
enlightening.	However,	the	fact	that	“it	can	be	done”	should	not	be	used	as	an	excuse	to	quantitatively
lump	together	concepts	and	hypotheses	simply	because	methods	are	available	to	do	so	(see	Kazdin,



Durac,	&	Agteros,	1979,	for	a	humorous	treatment	of	this	issue).	Synthesists	must	pay	attention	to	those
distinctions	in	the	literature	that	will	be	meaningful	to	the	users	of	the	synthesis.	For	example,	in	the
meta-analysis	of	the	effects	of	choice	on	intrinsic	motivation,	we	did	not	combine	study	results	across	the
nine	different	outcome	measures.	Doing	so	would	have	obscured	important	distinctions	among	the
outcomes	and	might	have	been	misleading.	Instead,	the	highest	level	of	data	aggregation	was	within
outcome	types.

Another	instance	of	too	much	aggregation	occurs	when	a	hypothesis	has	been	tested	using	different	types
of	controls.	For	example,	one	study	examining	the	effect	of	daily	aerobic	exercise	on	adults’	levels	of
cognitive	functioning	might	compare	this	treatment	to	a	no-treatment	control	while	another	study
compares	it	to	a	treatment	in	which	participants	receive	written	information	about	the	importance	of
exercise.	It	might	not	be	informative	to	statistically	combine	the	results	of	these	two	studies.	To	what
comparison	does	the	combined	effect	relate?	Synthesists	might	find	that	a	distinction	in	the	type	of
control	group	is	important	enough	not	to	be	obscured	in	a	quantitative	analysis	(but	an	analysis	of	the
moderating	effects	of	different	types	of	control	groups	might	be	appropriate	here).

Third,	under	certain	conditions	meta-analysis	might	not	lead	to	the	kinds	of	generalizations	the
synthesists	wish	to	make.	For	example,	cognitive	psychologists	or	cognitive	neuroscientists	might	argue
that	their	methodologies	typically	afford	good	controls	and	reasonably	secure	findings	because	the	things
they	study	are	not	strongly	affected	by	the	context	in	which	the	study	is	conducted.	Thus,	the	debate
about	effects	in	these	areas	of	research	usually	occurs	with	reference	to	the	choice	of	variables	and	their
theoretical,	or	interpretive,	significance.	Under	these	circumstances,	a	synthesist	might	convincingly
establish	generalization	using	conceptual	and	theoretical	bridges	rather	than	statistical	ones.

Finally,	even	if	synthesists	wish	to	summate	statistical	results	across	studies	on	the	same	topic,	they	may
discover	that	only	a	few	studies	have	been	conducted	and	that	these	use	methodologies,	participants,	and
outcome	measures	that	are	decidedly	different	from	one	another.	In	circumstances	where	multiple
methodological	distinctions	are	confounded	with	one	another	(e.g.,	a	particular	research	design	occurs
very	frequently	with	a	particular	type	of	subject),	the	statistical	combination	of	studies	might	mask
important	differences	in	research	that	make	interpretation	of	the	synthesis	findings	difficult.	In	these
instances,	it	may	make	the	most	sense	not	to	use	meta-analysis,	or	to	conduct	several	discrete	meta-
analyses	within	the	same	synthesis	by	combining	only	those	studies	that	share	similar	clusters	of
features.

It	is	also	important	to	point	out	that	the	use	of	meta-analysis	is	no	guarantee	that	the	synthesist	will	be
immune	from	all	inferential	errors.	The	possibility	always	exists	that	the	meta-analyst	has	incorrectly
inferred	a	characteristic	of	the	target	population.	As	in	the	use	of	statistics	in	primary	research,	this	can
occur	because	the	target	population	does	not	conform	to	the	assumptions	underlying	the	analysis
techniques	or	because	of	the	probabilistic	nature	of	statistical	findings.	If	you	think	that	the	population
statistics	do	not	conform	to	the	assumptions	of	the	statistical	test	you	have	chosen,	find	a	more
appropriate	test	or	eschew	the	use	of	meta-analysis	altogether.	In	sum,	then,	an	important	question	to	ask
when	evaluating	a	research	synthesis	is,

Was	an	appropriate	method	used	to	combine	and	compare	results	across	studies?

The	Impact	of	Integrating	Techniques	on	Synthesis	Outcomes
In	Chapter	1	I	described	a	study	I	conducted	with	Robert	Rosenthal	(Cooper	&	Rosenthal,	1980)	in	which
we	demonstrated	some	of	the	differences	in	conclusions	that	might	be	drawn	by	nonquantitative
synthesists	and	meta-analysts.	In	that	study,	graduate	students	and	university	faculty	members	were
asked	to	evaluate	the	same	set	of	studies,	but	half	used	quantitative	procedures	and	half	used	whatever
criteria	appealed	to	them.	We	found	that	the	meta-analysts	thought	there	was	more	support	for	the
hypothesis	and	a	larger	relationship	between	variables	than	did	the	non-meta-analysts.	Meta-analysts	also
tended	to	view	future	replications	as	less	necessary	than	did	non-meta-analysts,	although	this	finding	did
not	reach	statistical	significance.

It	is	also	likely	that	the	different	statistical	procedures	used	by	meta-analysts	will	create	variance	in
synthesis	conclusions.	Several	different	paradigms	have	emerged	for	quantitatively	integrating	research
with	a	traditional	inference	testing	model	(Hedges	&	Olkin,	1985;	Rosenthal,	1984;	Schmidt	&	Hunter,
2015),	while	others	use	a	Bayesian	perspective	(Sutton,	Abrams,	Jones,	Sheldon,	&	Song,	2000;	United
States	Department	of	Health	and	Human	Services	Agency	for	Healthcare	Research	and	Quality,	2013).
The	different	techniques	generate	different	output.	Thus,	the	rules	adopted	to	carry	out	quantitative
analysis	can	differ	from	synthesist	to	synthesist,	which	might	create	differences	in	how	synthesis	results
are	interpreted.	We	can	assume	as	well	that	the	rules	used	by	nonquantitative	synthesists	also	vary,	but
that	because	of	their	inexplicit	nature	it	is	difficult	to	compare	them	formally.

Main	Effects	and	Interactions	in	Meta-Analysis



Before	examining	several	of	the	quantitative	techniques	available	to	synthesists,	it	is	important	to	take	a
closer	look	at	some	of	the	unique	features	of	accumulated	research	results.	In	Chapter	2	on	problem
formulation,	I	pointed	out	that	most	research	syntheses	first	focus	on	tests	of	main	effects	that	were
carried	out	in	the	primary	studies.	This	is	largely	because	conceptually	related	replications	of	main
effects	occur	more	frequently	than	tests	of	three	or	more	interacting	variables.	So,	for	example,	you	are
likely	to	find	in	primary	studies	many	more	main-effect	tests	of	whether	choice	influences	intrinsic
motivation	than	you	are	to	find	tests	of	interactions	of	whether	this	relationship	is	influenced	by	the
number	of	choices	given.	Keep	in	mind	that	I	am	referring	here	to	interaction	tests	within	a	single	study,
not	your	ability	to	test	for	the	influence	of	number-of-choices	at	the	synthesis	level	because	different
studies	have	varied	in	the	number	of	choices	they	provide	in	their	test	of	the	main	effect.

It	is	not	that	interactions	tested	in	primary	studies	cannot	be	combined.	However,	such	replications	are
fewer	and,	we	shall	see	in	the	next	chapter,	their	interpretation	can	be	a	bit	more	complex.	There	are	two
different	ways	that	interactions	tested	in	primary	research	could	be	statistically	combined	across	studies.
First,	the	relationship	strengths	associated	with	each	study’s	interaction	test	could	be	aggregated.	An
alternative	strategy	would	be	to	aggregate	separately	the	relationship	of	two	of	the	interacting	variables
at	each	level	of	the	third	variable.	For	instance,	assume	there	exists	a	set	of	studies	in	which	the	primary
researchers	tested	whether	the	effect	of	choice	in	intrinsic	motivation	differed	depending	on	the	number
of	choices	given	to	participants.	The	synthesists	could	generate	an	estimate	of	the	difference	in	intrinsic
motivation	depending	on	the	number	of	choices	given.	They	could	aggregate	all	motivation	measures
taken	under	conditions	where	a	choice	between	two	alternatives	was	compared	to	no	choice.	They	could
do	the	same	for	measures	taken	after,	say,	two	or	three	choices.	Then,	the	different	effect	sizes	could	be
compared.	This	would	probably	be	more	useful	and	easily	interpretable	than	a	direct	estimate	of	the
magnitude	of	the	interaction	effect.	However,	in	order	to	do	this,	the	primary	research	reports	must
contain	the	information	needed	to	isolate	the	different	simple	main	effects.	The	synthesist	might	also	have
to	group	numbers	of	choices	(e.g.,	three	to	five	choices	and	six	or	more	choices)	in	order	to	have	enough
tests	to	generate	a	good	estimate.

Because	main	effects	are	most	often	the	focus	of	meta-analysts	and	in	many	instances	meta-analysts
interested	in	interactions	reduce	them	to	simple	effects,	my	discussion	of	the	quantitative	combining
techniques	will	refer	to	main	effects	only.	The	generalization	to	meta-analyzing	interactions	is
mathematically	straightforward.

Meta-Analysis	and	the	Variation	Among	Study	Results
In	research	syntheses,	the	most	obvious	feature	of	both	main	effects	and	interactions	is	that	the	results	of
the	separate	tests	of	the	same	relationship	will	vary	from	one	study	to	the	next.	This	variability	is
sometimes	dramatic	and	requires	us	to	ask	where	the	variability	comes	from.

Sources	of	Variability	in	Research	Findings
Differences	in	the	outcomes	of	studies	can	be	caused	by	two	types	of	influences.	The	simplest	cause	is	the
one	that	is	most	often	overlooked	by	nonquantitative	synthesists—sampling	variability.	Even	before	the
current	interest	in	quantitative	synthesis,	Taveggia	(1974)	recognized	this	important	influence:

A	methodological	principle	overlooked	by	writers	of	.	.	.	reviews	is	that	research	results	are
probabilistic.	What	this	principle	suggests	is	that,	in	and	of	themselves,	the	findings	of	any	single
research	are	meaningless—they	may	have	occurred	simply	by	chance.	It	also	follows	that	if	a	large
enough	number	of	researches	has	been	done	on	a	particular	topic,	chance	alone	dictates	that	studies
will	exist	that	report	inconsistent	and	contradictory	findings!	Thus,	what	appears	to	be	contradictory
may	simply	be	the	positive	and	negative	details	of	a	distribution	of	findings.	(pp.	397–398,	emphasis	in
original)

Taveggia	highlights	one	of	the	implications	of	using	probability	theory	and	sampling	techniques	to	make
inferences	about	populations.

As	an	example,	suppose	it	was	possible	to	measure	the	academic	achievement	of	every	American	student
as	well	as	whether	each	student	did	homework.	Also,	suppose	that	if	such	a	task	were	undertaken,	it
would	be	found	that	achievement	was	exactly	equal	for	students	who	do	and	do	not	do	homework—that	is,
exactly	equal	achievement	test	mean	scores	existed	for	the	two	subpopulations.	Still,	if	1,000	samples	of
50	homeworkers	and	50	no-homeworkers	were	drawn	from	this	population,	very	few	comparisons
between	samples	would	reveal	exactly	equal	group	means.	About	half	would	show	homeworkers
achieving	better	and	half	would	show	no-homeworkers	achieving	better.	Furthermore,	if	the	sample
means	were	compared	statistically	using	a	t-test	and	the	p	<	.05	significance	level	(two-tailed),	about	25
comparisons	would	show	a	significant	difference	favoring	homeworkers	while	about	25	would	favor	no-
homeworkers.	This	variation	in	results	is	an	unavoidable	consequence	of	the	fact	that	the	means
estimated	by	sampling	will	vary	somewhat	from	the	true	population	values.	And,	just	by	chance	alone,



some	comparisons	will	pair	sample	estimates	that	vary	from	their	true	population	values	by	large
amounts	and	in	opposite	directions.

In	the	example	given,	it	is	unlikely	that	you	would	be	fooled	into	thinking	anything	but	chance	caused	the
result—after	all,	950	comparisons	would	reveal	nonsignificant	differences	and	significant	results	would	be
distributed	equally	for	both	significant	positive	and	negative	outcomes.	However,	in	practice	the	pattern
of	results	is	rarely	this	clear.	As	we	discovered	in	the	chapter	on	literature	searching,	you	might	not	be
aware	of	all	null	results	because	they	are	hard	to	find.	Complicating	matters	further,	even	if	an	overall
relation	does	exist	between	two	variables	(i.e.,	the	null	hypothesis	is	false),	some	studies	can	still	show
significant	results	in	a	direction	opposite	to	the	relation	in	the	population.	To	continue	the	example,	if	the
average	achievement	of	homeworkers	is	better	than	no-homeworkers,	some	comparisons	of	samples
randomly	drawn	from	the	two	subpopulations	will	still	favor	no-homeworkers,	the	number	depending	on
the	size	of	the	relation,	the	size	of	the	samples,	and	how	many	comparisons	have	been	performed.	In	sum,
then,	one	source	of	variance	in	the	results	of	studies	can	be	chance	fluctuations	due	to	the	inexactness	of
estimates	based	on	samples	drawn	from	populations.

A	second	source	of	variance	in	study	outcomes	is	of	more	interest	to	synthesists.	This	variance	in	results
is	created	by	differences	in	how	studies	are	conducted.	This	variance	is	added	to	the	variance	due	to
sampling	participants.	Just	as	people	are	sampled,	you	can	think	of	a	set	of	studies	as	a	sample	of	studies
drawn	from	a	population	of	all	possible	studies.	And,	because	studies	can	be	conducted	in	different	ways
(just	as	people	can	differ	in	personal	attributes)	that	affect	the	studies	outcomes,	a	sample	of	studies	also
will	exhibit	chance	variation	from	other	possible	samples	of	studies.	For	instance,	the	homework
synthesists	might	find	that	studies	comparing	achievement	among	students	who	do	and	do	not	do
homework	have	been	conducted	with	students	at	different	grade	levels;	with	unit	tests,	class	grades,	or
standardized	tests	as	measures	of	achievement;	and	with	an	assortment	of	classes	with	different	subject
matters.	Each	of	these	differences	in	the	studies’	methods	or	contexts	could	create	variation	in	study
results	and	therefore	could	create	results	that	differ	randomly	from	another	sample	of	studies	drawn	from
the	same	population	of	studies.	This	variation	will	be	added	to	the	variation	caused	by	the	sampling	of
study	participants	from	the	population	of	participants.

It	is	also	possible	that	this	variation	associated	with	study-level	differences	is	systematically	related	to	the
variation	in	study	results.	For	example,	homework	studies	conducted	with	elementary	school	students
might	produce	results	that	differ	systematically	from	studies	conducted	with	high	school	students.	In
Chapter	2,	the	notion	of	synthesis-generated	evidence	was	introduced	to	describe	what	we	learn	when	we
find	associations	between	study	characteristics	and	study	outcomes.

The	existence	of	the	two	sources	of	variance	in	research	results—the	one	generated	by	sampling
participants	and	the	other	by	sampling	studies—raises	an	interesting	dilemma.	When	discrepant	findings
occur	within	a	set	of	studies,	should	you	seek	an	explanation	for	them	by	attempting	to	identify
systematic	differences	in	results	associated	with	differences	in	the	methods	used	in	studies?	Or	should
you	simply	assume	the	discrepant	findings	were	produced	by	variations	due	to	sampling	(of	participants
and/or	study	procedures)?	Some	tests	have	been	devised	to	help	you	answer	this	question.	In	effect,	these
tests	use	sampling	error	(associated	with	participants	or	both	participants	and	studies)	as	the	null
hypothesis.	They	estimate	the	amount	of	variance	in	findings	that	would	be	expected	if	sampling	error
alone	were	making	the	study	findings	different.1	If	the	observed	variation	in	results	across	studies	is	too
great	to	be	explained	by	sampling	error	alone,	then	the	null	hypothesis	is	rejected.	It	suggests	that	the
notion	that	all	the	results	were	drawn	from	the	same	population	of	results	can	be	rejected.

In	the	sections	that	follow,	I	will	introduce	some	of	the	quantitative	synthesis	techniques	that	are
available	to	you.	I	have	chosen	the	techniques	because	they	are	relatively	simple	and	broadly	applicable.
The	treatment	of	each	technique	will	be	conceptual	and	introductory	but	detailed	enough	to	permit	you	to
perform	a	sound,	if	basic,	meta-analysis.	You	can	consult	the	primary	sources	cited	in	the	text	if	(a)	you
want	a	more	detailed	description	of	these	techniques	and	their	variations,	including	how	they	are	derived,
and/or	(b)	your	meta-analysis	has	some	unique	possibilities	for	exploring	data	in	ways	not	covered	here.
For	the	discussion	that	follows,	I	have	assumed	you	have	a	working	knowledge	of	the	basic	inferential
statistics	employed	in	the	social	sciences.

Before	I	begin,	though,	there	are	three	assumptions	crucial	to	the	validity	of	a	conclusion	based	on	an
integration	of	statistical	findings	from	individual	studies.	First	and	most	obviously,	the	individual	findings
that	go	into	a	cumulative	analysis	should	all	test	the	same	comparison	or	estimate	the	same	relationship.
Regardless	of	how	conceptually	broad	or	narrow	your	ideas	might	be,	you	should	be	comfortable	with	the
assertion	that	the	included	statistical	tests	from	the	primary	studies	address	the	same	question.	Second,
the	separate	tests	that	go	into	the	cumulative	analysis	must	be	independent	of	one	another.	Identifying
independent	comparisons	was	discussed	in	Chapter	4,	on	gathering	information	from	studies.	You	must
take	care	to	identify	comparisons	so	that	each	one	contains	unique	information	about	the	hypothesis.
Finally,	you	must	believe	that	the	primary	researchers	made	valid	assumptions	when	they	computed	the
results	of	their	tests.	Thus,	for	example,	if	you	want	to	combine	the	effect	sizes	resulting	from
comparisons	between	two	means,	you	must	assume	that	the	observations	in	the	two	groups	in	the
primary	studies	are	independent	and	normally	distributed,	and	that	their	variances	are	roughly	equal	to



one	another.

Vote	Counting
The	simplest	methods	for	combining	independent	statistical	tests	are	the	vote	counting	methods.	Vote
counts	can	take	into	account	the	statistical	significance	of	findings	or	focus	only	on	the	direction	of	the
findings.

For	the	first	method,	the	meta-analysts	would	take	each	finding2	and	place	it	into	one	of	three	categories:
statistically	significant	findings	in	the	expected	direction	(I	will	refer	to	these	as	positive	findings),
statistically	significant	findings	in	the	unexpected	(negative)	direction,	and	nonsignificant	findings—that
is,	findings	that	did	not	permit	rejection	of	the	null	hypothesis.	The	meta-analysts	then	might	establish	the
rule	that	the	category	with	the	largest	number	of	findings	tells	what	the	direction	of	the	relationship	is	in
the	target	population.

This	vote	count	of	significant	findings	has	much	intuitive	appeal	and	has	been	used	quite	often.	However,
the	strategy	is	unacceptably	conservative	and	often	can	lead	to	erroneous	conclusions	(Hedges	&	Olkin,
1980).	The	problem	is	that	using	the	traditional	definition	of	statistical	significance,	chance	alone	should
produce	only	about	5%	of	all	findings	falsely	indicating	a	significant	effect.	Therefore,	much	fewer	than
one-third	positive	and	statistically	significant	findings	might	indicate	a	real	difference	exists	in	the	target
population.	This	vote-counting	strategy	requires	that	at	least	34%	of	findings	be	positive	and	statistically
significant	before	a	result	is	declared	a	winner.

Let	me	illustrate	just	how	conservative	this	approach	is.	Assume	that	a	correlation	of	r	=	.30	exists
between	two	variables	in	a	population	and	20	studies	have	been	conducted	with	40	people	in	each	sample
(this	would	not	be	an	uncommon	scenario	in	the	social	sciences).	The	probability	that	the	vote	count
associated	with	this	series	of	studies	will	conclude	a	positive	relation	exists—if	the	plurality	decision	rule
described	in	the	preceding	paragraph	is	used—is	less	than	6	in	100.	Thus,	the	vote	count	of	significant
findings	could,	and	often	does,	lead	vote	counters	to	suggest	accepting	the	null	hypothesis,	and	perhaps
abandoning	fruitful	theories	or	effective	interventions	when,	in	fact,	no	such	conclusion	is	warranted.

Adjusting	the	frequencies	of	the	three	types	of	findings	(positive,	negative,	and	null)	so	that	the	true
expected	percentage	of	each	finding	(95%	null	and	2.5%	significant	in	each	direction)	is	taken	into
account	solves	one	problem	but	it	highlights	another	one.	We	have	seen	that	null	results	are	less	likely	to
be	reported	by	researchers	and	are	less	likely	to	be	retrieved	by	synthesists.	Therefore,	if	the	appropriate
expected	values	are	used	in	a	vote-count	analysis,	it	could	often	occur	that	both	positive	and	negative
significant	findings	appear	more	frequently	than	would	be	expected	by	chance	alone.	Thus,	it	seems	that
using	the	frequency	of	nonsignificant	findings	in	a	vote	count	procedure	is	of	dubious	value.

An	alternative	vote-counting	method	is	to	compare	the	frequency	of	statistically	significant	positive
findings	against	the	frequency	of	significant	negative	ones.	This	procedure	assumes	that	if	the	null
hypothesis	prevails	in	the	population,	then	the	frequency	of	significant	positive	and	negative	findings	is
expected	to	be	equal.	If	the	frequency	of	findings	is	found	not	to	be	equal,	then	the	null	hypothesis	can	be
rejected	in	favor	of	the	prevailing	direction.	A	problem	with	this	vote-count	approach	is	that	the	expected
number	of	nonsignificant	findings,	even	when	the	null	hypothesis	is	not	true,	can	still	be	much	greater
than	the	expected	number	of	either	positive	or	negative	significant	findings.	Therefore,	this	approach	will
ignore	many	findings	(all	nonsignificant	ones)	and	will	be	very	low	in	statistical	power.

A	final	way	to	perform	vote	counts	in	research	synthesis	involves	tallying	the	number	of	positive	and
negative	findings	regardless	of	their	statistical	significance.	In	this	approach,	the	meta-analyst
categorizes	findings	based	solely	on	the	direction	of	their	outcome,	ignoring	their	statistical	significance.
Again,	if	the	null	hypothesis	is	true—that	is,	if	no	relationship	exists	between	the	variables	in	the	sampled
population—we	would	expect	the	number	of	findings	in	each	direction	to	be	equal.

Once	the	number	of	results	in	each	direction	is	counted,	the	meta-analyst	can	perform	a	simple	sign	test
to	discover	if	the	cumulative	result	suggests	that	one	direction	occurs	more	frequently	than	would	be
expected	by	chance.	The	formula	for	computing	the	sign	test	is	as	follows:

(1)
Zvc=(Np)−(12N)12N

where

Zvc	=	the	standard	normal	deviate,	or	Z-score,	for	the	overall	series	of	findings;
Np	=	the	number	of	positive	findings;	and



N	=	the	total	number	of	findings	(positive	plus	negative	findings).

The	Zvc	can	be	referred	to	a	table	of	standard	normal	deviates	to	discover	the	probability	(one-tailed)
associated	with	the	cumulative	set	of	directional	findings.	If	a	two-tailed	p-level	is	desired,	the	tabled	p-
value	should	be	doubled.	The	values	of	Z	associated	with	different	p-levels	are	presented	in	Table	6.1.
This	sign	test	can	be	used	in	a	vote	count	of	either	the	simple	direction	of	all	findings	or	the	direction	of
only	significant	findings,	though	using	the	direction	of	findings	is	recommended.

Suppose	25	of	36	comparisons	find	that	adults	given	an	intervention	to	increase	aerobic	activity	exhibited
better	neurocognitive	functioning	than	those	in	a	no-intervention	group.	The	probability	that	this	many
findings	would	be	in	one	direction,	given	that	in	the	target	population	(of	all	intervention	tests)	there	is
equal	neurocognitive	functioning	exhibited	by	people	in	the	two	conditions,	is	p	<	.02	(two-tailed)
associated	with	a	Zvc	of	2.33.	This	result	would	lead	the	meta-analyst	to	conclude	a	positive	intervention
effect	was	supported	by	the	series	of	findings.

The	vote-count	method	that	uses	the	direction	of	findings	regardless	of	significance	has	the	advantage	of
using	information	from	all	statistical	findings.	Still,	it	has	some	drawbacks.	Similar	to	the	other	vote-count
methods,	it	does	not	weight	a	finding’s	contribution	to	the	overall	result	by	its	sample	size.	Thus,	a	finding
based	on	100	participants	is	given	weight	equal	to	one	with	1,000	participants.	Furthermore,	the	revealed
magnitude	of	the	relationship	(e.g.,	the	impact	of	the	treatment)	in	each	finding	is	not	considered—a
finding	showing	a	large	increase	in	cognitive	functioning	due	to	the	intervention	is	given	equal	weight	to
one	showing	a	small	decrease	in	functioning.	Finally,	a	practical	problem	with	the	directional	vote	count
is	that	primary	researchers	frequently	do	not	report	the	direction	of	findings	if	a	comparison	proved
statistically	nonsignificant.



SOURCE:	Adapted	from:	Wikipedia	(2015),	http://en.wikipedia.org/wiki/Standard_normal_table

Still,	the	vote	count	of	directional	findings	can	be	an	informative	complement	to	other	meta-analytic
procedures,	and	can	even	be	used	to	generate	an	estimate	of	the	strength	of	a	relationship.	Bushman	and
Wang	(2009)	provide	formulas	and	tables	that	can	be	used	to	estimate	the	size	of	a	population
relationship	given	that	the	meta-analysts	know	(a)	the	number	of	findings,	(b)	the	direction	of	each
finding,	and	(c)	the	sample	size	of	each	finding.	For	example,	let’s	assume	that	each	one	of	the	36
comparisons	between	an	activity	intervention	and	no-intervention	group	was	based	on	a	sample	size	of	50
participants.	Using	Bushman	and	Wang’s	technique,	I	find	that	when	25	of	the	36	(69%)	comparisons
revealed	better	cognitive	functioning	in	the	intervention	group,	the	most	likely	population	value	for	a
correlation	between	group	membership	and	activity	is	r	=	.07.	Of	course,	this	example	is	artificial
because	I	assumed	all	the	sample	sizes	were	equal.	The	calculations	are	more	complex	in	many
circumstances,	not	only	because	sample	sizes	vary	but	also	because	you	will	have	comparisons	(votes)	for
which	you	have	no	direction.	This	complicates	the	estimating	technique	greatly.	In	the	past,	when	we
have	used	this	technique	(see	Cooper,	Charlton,	Valentine,	&	Muhlenbruck,	2000),	we	conducted	the
analyses	several	times,	using	different	sets	of	assumptions.	In	general,	this	technique	should	be	used	with
caution	and	only	in	conjunction	with	other	meta-analytic	techniques	that	produce	conclusions	that	are
less	tentative.

In	sum,	then,	meta-analysts	can	perform	vote	counts	to	aggregate	results	across	individual	studies	by
comparing	the	number	of	directional	findings	and/or	the	number	of	significant	directional	findings.	Both
of	these	procedures	will	be	very	imprecise	and	conservative—that	is,	they	will	accept	the	null	hypothesis
when	more-precise	methods	suggest	it	should	be	rejected.	The	simple	direction	of	results	will	not	appear



in	many	research	reports	in	the	first	case,	and	nonsignificant	findings	cannot	contribute	to	the	analysis	in
the	second	case.	Vote	counts	can	be	described	in	meta-analyses	but	should	be	used	to	draw	inferences
only	in	combination	with	more	sensitive	meta-analysis	procedures.

Combining	Significance	Levels
One	way	to	address	the	shortcomings	of	vote	counts	is	to	consider	combining	the	exact	probabilities
associated	with	the	results	of	each	comparison.	Rosenthal	(1984)	cataloged	16	methods	for	combining	the
results	of	inference	tests	so	that	an	overall	test	of	the	null	hypothesis	can	be	obtained.	By	using	the	exact
probabilities,	the	results	of	the	combined	analysis	take	into	account	the	different	sample	sizes	and
relationship	strengths	found	in	each	comparison.	Thus,	the	combining-significance-levels	procedure
overcomes	the	improper	weighting	problems	of	the	vote	count.	However,	it	has	severe	limitations	of	its
own.	First,	as	with	vote	counts,	the	combining-probability	procedures	answer	the	“yes	or	no?”	questions
but	not	the	“how	much?”	question.	Second,	whereas	the	vote-count	procedure	is	overly	conservative,	the
combining-significance-levels	procedure	is	extremely	powerful.	In	fact,	it	is	so	powerful	that	for
hypotheses	or	relationships	that	have	generated	a	large	number	of	findings,	rejecting	the	null	hypothesis
is	so	likely,	because	even	very	small	relationships	can	produce	significant	combined	probabilities,	that	it
becomes	a	rather	uninformative	exercise.	For	this	reason,	these	procedures	have	largely	fallen	out	of	use.

Measuring	Relationship	Strength
The	primary	function	of	the	procedures	described	so	far	is	to	help	meta-analysts	accept	or	reject	the	null
hypothesis.	Until	recently,	most	researchers	interested	in	social	theory	and	the	impact	of	social
interventions	have	been	content	to	simply	identify	relations	that	have	some	explanatory	value.	The
prevalence	of	this	“yes	or	no”	question	was	partly	due	to	the	relatively	imprecise	nature	of	social	science
theories	and	hypotheses.	Social	hypotheses	typically	were	crudely	stated	first	approximations	to	the
truth.	Social	researchers	rarely	asked	how	potent	theories	or	interventions	were	for	explaining	human
behavior	or	how	competing	explanations	compare	with	regard	to	their	relative	explanatory	value.	Today,
as	their	theories	and	interventions	are	becoming	more	sophisticated,	social	scientists	are	more	often
making	inquiries	about	the	size	of	relationships.

Giving	further	impetus	to	the	“how	much?”	question	is	a	growing	disenchantment	with	the	null	hypothesis
significance	test	itself.	As	I	noted	earlier,	whether	a	null	hypothesis	can	be	rejected	is	tied	closely	to	the
particular	research	project	under	scrutiny.	If	an	ample	number	of	participants	are	available	or	if	a
sensitive	research	design	is	employed,	a	rejection	of	the	null	hypothesis	often	is	not	surprising.	This	state
of	affairs	becomes	even	more	apparent	in	meta-analyses	that	include	a	combined	significance	level,	where
the	power	is	great	to	detect	even	very	small	relations.	A	null	hypothesis	rejection,	then,	does	not
guarantee	that	an	important	social	insight	has	been	achieved.

Finally,	when	used	in	applied	social	research,	the	vote-count	and	combined-significance-level	techniques
give	no	information	on	whether	the	effect	of	a	treatment	or	the	relationship	between	variables	is	large	or
small,	important	or	trivial.	For	example,	if	we	find	that	the	relationship	between	whether	a	participant	(a)
is	an	adolescent	or	adult	and	(b)	believes	that	women	share	some	culpability	when	a	rape	occurs	is
statistically	significant	and	the	correlation	is	r	=	.01,	is	this	a	strong	enough	relationship	that	it	should
influence	how	interventions	are	delivered?	What	if	the	result	is	statistically	significant	and	the	correlation
is	r	=	.30?	This	example	suggests	that	the	“yes	or	no?”	question	is	often	not	the	question	of	greatest
importance.	Instead,	the	important	question	is,	“How	much	does	the	age	of	the	participant	influence
beliefs	about	rape?”	The	answer	might	be	zero	or	it	might	suggest	a	small	or	large	relationship.	The
answer	to	this	question	could	help	meta-analysts	(and	others)	make	recommendations	about	how	best	to
construct	rape-attitude	interventions	so	they	are	most	effective.	Given	these	questions,	meta-analysts
would	turn	to	the	calculation	of	average	effect	sizes.	Also,	as	we	shall	see	shortly,	the	null	hypothesis
question,	“Is	the	relationship	different	from	zero?”	can	be	answered	by	placing	a	confidence	interval
around	the	“how	much?”	estimate,	removing	the	need	for	separate	null	hypothesis	significance	tests.

Definition	of	Effect	Size
In	order	to	answer	meaningfully	the	“how	much?”	question,	we	must	agree	on	definitions	for	the	terms
magnitude	of	difference,	relationship	strength,	or	what	generally	is	called	the	effect	size.	Also,	we	need
methods	for	quantitatively	expressing	these	ideas	once	we	have	defined	them.	Jacob	Cohen’s	(1988)	book
Statistical	Power	Analysis	for	the	Behavioral	Sciences	presented	what	is	now	the	standard	definition	of
effect	sizes.	He	defined	an	effect	size	as	follows:

Without	intending	any	necessary	implication	of	causality,	it	is	convenient	to	use	the	phrase	“effect
size”	to	mean	“the	degree	to	which	the	phenomenon	is	present	in	the	population,”	or	“the	degree	to
which	the	null	hypothesis	is	false.”	By	the	above	route	it	can	now	readily	be	clear	that	when	the	null
hypothesis	is	false,	it	is	false	to	some	specific	degree,	i.e.,	the	effect	size	(ES)	is	some	specific	non-
zero	value	in	the	population.	The	larger	this	value,	the	greater	the	degree	to	which	the	phenomenon



under	study	is	manifested.	(pp.	9–10,	emphasis	in	original)

Figure	6.2	presents	three	hypothetical	relationships	that	illustrate	Cohen’s	definition.	Suppose	the	results
come	from	three	experiments	comparing	the	effects	of	an	aerobic	exercise	intervention	versus	a	no-
treatment	control	on	adults’	cognitive	functioning.	The	top	graph	presents	a	null	relationship.	That	is,	the
participants	given	the	intervention	have	a	mean	and	distribution	of	cognitive	functioning	scores	identical
to	the	no-intervention	participants.	In	the	middle	graph,	the	intervention	group	has	a	mean	cognitive
functioning	score	slightly	higher	than	that	of	the	no-intervention	group,	and	in	the	bottom	graph	the
difference	between	intervention	and	no-intervention	is	even	greater.	A	measure	of	effect	size	must
express	the	three	results	so	that	greater	departures	from	the	null	are	associated	with	larger	effect	size
values.

Cohen’s	(1988)	book	contains	many	different	metrics	for	describing	the	strength	of	a	relationship.	Each
effect	size	index	is	associated	with	a	particular	research	design	in	a	manner	similar	to	t-tests	being
associated	with	two-group	comparisons,	F-tests	associated	with	multiple-group	designs,	and	chi-squares
associated	with	frequency	tables.	Next,	I	will	describe	the	three	primary	metrics	used	by	the	vast	majority
of	meta-analysts.	These	metrics	are	generally	useful—almost	any	research	outcome	can	be	expressed
using	one	of	them.	For	more-detailed	information	on	these	effect	size	metrics,	as	well	as	many	others,	the
reader	should	consult	Cohen’s	(1988)	book	or	Cumming’s	(2012)	book.	However,	Cohen	describes	several
metrics	that	permit	effect	size	estimates	for	multiple-degree-of-freedom	comparisons	(e.g.,	a	comparison
involving	more	than	two	group	means,	such	as	three	religious	groups’	attitudes	toward	rape),	and	these
typically	should	not	be	used,	for	reasons	that	will	be	discussed	shortly.	Thus,	my	description	of	metrics	is
restricted	to	those	commensurate	with	single-degree-of-freedom	tests.

Figure	6.2	Three	Hypothetical	Relations	Between	an	Exercise	Intervention	and	a	No-Intervention	Group

Standardized	Mean	Difference:	The	d-index	or	g-index
The	d-index,	or	standardized	mean	difference	measure,	of	an	effect	size	is	appropriate	to	use	when	the
difference	between	two	means	is	being	compared.	The	d-index	is	typically	used	in	association	with	t-tests
or	F-tests	based	on	a	comparison	of	two	groups	or	experimental	conditions.	The	d-index	expresses	the
distance	between	the	two	group	means	in	terms	of	their	common	standard	deviation.	By	the	term
common	standard	deviation,	I	mean	that	the	assumption	is	made	that	if	we	could	measure	the	standard
deviations	within	the	two	subpopulations	sampled	into	the	two	groups,	we	would	find	them	to	be	equal.

The	hypothetical	research	results	for	three	studies	presented	in	Figure	6.2	comparing	an	intervention
meant	to	promote	aerobic	activity	among	adults	with	a	no-intervention	condition	illustrates	the	d-index.
The	dependent	variable	is	some	measure	of	neurocognitive	functioning,	maybe	short-term	memory	or



speed	of	processing.	For	the	top	graph,	the	research	result	supports	the	null	hypothesis	and	the	d-index
equals	zero.	That	is,	there	is	no	distance	between	the	means	of	the	exercise	intervention	and	no-
intervention	group.	The	middle	research	result	reveals	a	d-index	of	.40—that	is,	the	mean	of	the
intervention	group	lies	4/10ths	of	a	standard	deviation	to	the	right	of	the	no-intervention	group’s	mean.	In
the	third	example,	a	d-index	of	.85	is	portrayed.	Here,	the	intervention	group	mean	rests	85/100ths	of	a
standard	deviation	to	the	right	of	the	mean	of	the	no-intervention	group.

Calculating	the	d-index	is	simple.	The	formula	is	as	follows:

(2)
d=X1¯−X2¯SDwithin

where

X¯1 	and	X¯2 	=	the	two	group	means;	and
SDwithin	=	the	estimated	common	standard	deviation	of	the	two	groups.

To	estimate	SDwithin,	you	can	use	the	formula

(3)
SDwithin=(n1−1)SD12+(n2−1)SD22n1+n2−2

where

SD1	and	SD2	=	the	standard	deviations	of	Group	X1	and	Group	X2,	respectively,	and
n1	and	n2	=	the	sample	sizes	in	Group	X1	and	Group	X2,	respectively.

The	d-index	is	not	only	simple	to	compute,	but	is	also	scale	free.	That	is,	the	standard	deviation
adjustment	in	the	denominator	of	the	formula	means	that	studies	using	different	measurement	scales	can
be	compared	or	combined.	So,	for	example,	if	one	study	of	the	exercise	intervention’s	effect	used	a
measure	of	short-term	memory	as	the	outcome	measure	and	another	study	used	a	measure	of	processing
speed	as	the	outcome	measure,	it	would	make	little	sense	to	combine	the	two	raw	differences	between
the	intervention	and	no-intervention	group	means—that	is,	combine	the	numerators	of	the	d-index
formula.	However,	it	might	make	sense	to	combine	the	two	results	if	we	first	convert	each	to	a
standardized	mean	difference.	Then,	if	we	assume	the	two	outcomes	measure	the	same	underlying
conceptual	variable	(i.e.,	cognitive	functioning),	the	two	outcomes	have	been	transformed	to	a	common
metric.

The	variance	of	the	d-index	can	be	closely	approximated	using	the	following	formula:

(4)
vd=n1+n2n1n2+d22(n1+n2)

where

all	variables	are	defined	as	above.
The	95%	confidence	interval	for	the	d-index	is	then	computed	as	d	−	1.95	Vd 	≤	d	≥	d	+	1.95	Vd

.

In	many	instances,	meta-analysts	will	find	that	primary	researchers	do	not	report	the	means,	standard
deviations,	and	sample	sizes	of	the	separate	groups	but	do	report	the	t-test	or	F-test	associated	with	the
difference	in	means,	and	the	direction	of	their	relationship.	In	such	cases,	Rosenthal	(1984)	provided	a
computation	formula	that	closely	approximates	the	d-index	and	does	not	require	the	meta-analysts	to
have	specific	means	and	standard	deviations.	This	formula	is	as	follows:

(5)
d=2tdferror



where

t	=	the	value	of	the	t-test	for	the	associated	comparison,	and
dferror	=	the	degrees	of	freedom	associated	with	the	error	term	of	the	t-test	(n1	+	n2	−	2).

In	instances	where	F-tests	with	a	single	degree	of	freedom	in	the	numerator	are	reported,	the	square	root
of	the	F-value	(i.e.,	t	=	√F)	and	its	denominator	degrees	of	freedom	can	be	substituted	in	the	above
formula.	Again,	these	approximations	of	the	d-index	assume	the	meta-analysts	know	the	direction	of	the
mean	difference.

In	fact,	it	is	possible	to	calculate	d-indexes	from	lots	of	different	pieces	of	data	and	from	numerous
different	designs.	I	refer	you	to	the	Practical	Meta-Analysis	Effect	Size	Calculator	(Wilson,	2015).	This
free	website	will	calculate	the	d-index	for	you	based	on	30	variations	in	the	information	you	have
available	and	for	different	research	designs.	Some	meta-analysis	software	programs	will	also	calculate
effect	sizes	for	you	but	you	must	be	sure	the	available	options	match	the	type	of	data	and	design	you	are
working	with.	If	not,	you	can	calculate	the	effect	size	using	an	(reliable)	Internet	calculator	and	transfer
these	to	the	meta-analysis	program.

Removing	small	sample	bias	from	estimates	of	population	values:	The	g-index.	A	sample	statistic—be	it	an
effect	size,	a	mean,	or	a	standard	deviation—typically	is	based	on	measurements	taken	on	a	small	number
of	people	drawn	from	a	larger	population.	These	sample	statistics	will	differ	in	known	ways	from	the
values	obtained	if	we	could	measure	every	person	in	the	population.	Meta-analysts	have	devised	ways	to
adjust	for	the	known	biases	that	occur	because	effect	size	estimates	based	on	samples	are	not	always
unbiased	reflections	of	their	underlying	population	values.

Hedges	(1980)	showed	that	the	d-index	based	on	small	samples	may	slightly	overestimate	the	size	of	an
effect	in	the	population.	However,	the	bias	is	minimal	if	the	sample	size	is	more	than	20.	If	meta-analysts
are	calculating	standardized	mean	differences	from	primary	research	based	on	samples	smaller	than	20,
Hedges’	g-index	should	be	used.	The	difference	between	the	d	and	g	formulas	is	simply	that	in	the	g-index
formula	the	pooled	estimate	for	the	population	standard	deviation	is	substituted	for	the	pooled	sample
standard	deviation	in	the	denominator	of	Formula	(2).	Conveniently,	a	search	of	the	Internet	for	“Effect
Size	Calculators”	will	locate	websites	that	will	simultaneously	calculate	for	you	effect	size	estimates
based	on	several	different	formulas	(e.g.,	Ellis,	2009).

In	addition	to	the	small	sample	bias	in	effect	size	estimates	meta-analysts	should	always	be	cautious	in
interpreting	any	statistics	based	on	a	small	number	of	data	points.	When	samples	are	small,	a	single
extreme	value	can	create	an	exceptionally	large	effect	size	estimate.

Choosing	an	estimate	for	the	standard	deviation	of	the	d-index.	Clearly,	an	important	influence	on	the	d-
index	is	the	size	of	the	standard	deviation	used	to	estimate	the	variance	around	group	means.	I	mentioned
previously	that	the	d-index	formula	is	based	on	the	assumption	that	the	standard	deviations	would	be
equal	in	the	two	groups	if	they	could	be	measured	precisely.	Many	times,	meta-analysts	have	no	choice
but	to	make	this	assumption	because	the	d-index	must	be	estimated	from	an	associated	t-test	or	F-test,
which	also	makes	this	assumption.	However,	in	instances	where	information	about	standard	deviations	is
available	and	they	appear	to	be	unequal,	the	meta-analyst	can	choose	one	group’s	standard	deviation	to
serve	as	the	denominator	in	the	d-index	for	purposes	of	standardizing	the	mean	difference.	For	example,
if	an	intervention	and	no-intervention	group	are	being	compared	and	the	standard	deviations	appear	to	be
different	(perhaps	because	the	intervention	shifts	the	group	mean	and	also	creates	greater	variance	in
outcomes),	then	the	control	group	standard	deviation	should	be	used.

Effect	Sizes	Based	on	Two	Continuous	Variables:	The	r-Index
A	second	effect	size,	the	r-index,	is	simply	the	Pearson	product-moment	correlation	coefficient.	The	r-
index	is	the	most	appropriate	metric	for	expressing	an	effect	size	when	the	researcher	is	interested	in
describing	the	relationship	between	two	continuous	variables.	So,	for	example,	if	we	are	interested	in	the
relationship	between	participants’	amount	of	exposure	to	pornography	and	their	degree	of	belief	that
women	share	culpability	for	rape,	we	would	use	the	correlation	coefficient	to	estimate	this	association.

The	r-index	is	familiar	to	most	social	scientists	but	the	formula	for	it	requires	both	the	variances	and
covariances	of	the	two	continuous	variables,	so	it	rarely	can	be	computed	from	information	typically
presented	in	primary	research	reports.	Luckily,	primary	researchers	do	report	their	r-indexes	in	most
instances	where	they	are	applicable.	However,	if	only	the	value	of	the	t-test	associated	with	the	r-index	is
given,	the	r-index	can	be	calculated	using	the	following	formula:

(6)
r=t2t2+dferror



where

all	terms	are	defined	as	above.

The	variance	of	the	r-index	can	be	calculated	using	the	following	formula:

(7)
vr=(1−r2)2n−1

where

all	terms	are	defined	as	above.

The	formula	can	be	used	to	calculate	the	95%	confidence	interval	as	r	−	1.95	Vr 	≤	r	≥	r	+	1.95	Vr .

Normalizing	the	distribution	of	r-indexes.	When	r-indexes	are	large—that	is,	when	they	estimate
population	values	very	different	from	zero—they	will	exhibit	non-normal	sampling	distributions.	This
occurs	because	r-indexes	are	limited	to	values	between	+1.00	and	−1.00.	Therefore,	as	a	population
value	approaches	either	of	these	limits,	the	range	of	possible	values	for	a	sample	estimate	will	be
restricted	on	the	tail	toward	the	approached	limit	(see	Shadish	&	Haddock,	2009).

To	adjust	for	this,	most	meta-analysts	convert	r-indexes	to	their	associated	z-scores	before	the	effect	size
estimates	are	combined	or	tested	for	moderators.	The	z-scores	have	no	limiting	value	and	are	normally
distributed.	Conceptually,	the	transformation	“stretches”	the	restricted	tail	of	the	distribution	and
restores	the	bell	shape	of	the	curve.	Once	an	average	z-score	has	been	calculated,	it	can	be	converted
back	to	an	r-index.	An	examination	of	r-to-z	transformations	reveals	that	the	two	values	are	nearly
identical	until	the	absolute	value	of	r	equals	about	.25.	However,	when	the	r-index	equals	.50,	the
associated	z-score	equals	.55,	and	when	the	r-index	equals	.8,	the	associated	z-score	equals	1.1.	The	z-
score	can	also	be	calculated	directly	from

(8)
z=.5[ln(1+r)−ln(1−r)]

where

ln	=	natural	logarithm	and
all	other	terms	are	defined	as	above.

The	variance	of	the	z-score	is

(9)
vz=1(n−3)

where

all	terms	are	defined	as	above.

For	greatest	ease,	you	can	find	r-to-z	transform	calculators	on	the	Internet	(e.g.,
http://vassarstats.net/tabs_rz.html)	that	will	also	calculate	measures	of	dispersion.	Be	sure	to	remember
that	once	you	have	calculated	the	average	z-score	of	the	transformed	correlations,	you	must	transform
this	back	into	a	correlation	coefficient	when	you	present	your	results.	The	z-score	will	have	little	meaning
for	your	audience.

Effect	Sizes	Based	on	Two	Dichotomous	Variables:	The	Odds	and	Risk
Ratios
A	third	class	of	effect	size	metric	is	applicable	when	both	variables	are	dichotomous—for	example,	when
elderly	adults	either	receive	or	do	not	receive	an	aerobic	activity	treatment	and	the	outcome	variable	is
whether	or	not	they	are	diagnosed	with	Alzheimer’s	disease	five	years	later.	In	this	case,	one	measure	of
effect,	called	an	odds	ratio,	is	often	used	in	medical	research,	where	researchers	are	frequently
interested	in	the	effect	of	a	treatment	on	mortality	or	the	appearance	or	disappearance	of	disease.	It	is
used	also	in	criminal	justice	research	where	the	outcome	variable	might	be	recidivism	(re-arrest	after	the
passage	of	a	certain	amount	of	time)	or	in	education	studies—for	example,	when	high	school	graduation
(yes	or	no)	is	the	outcome	of	interest.



As	its	name	implies,	the	odds	ratio	describes	the	relationship	between	two	sets	of	odds.	For	example,
suppose	meta-analysts	come	across	a	study	of	the	effects	of	an	intervention	promoting	aerobic	exercise
among	elderly	adults.	Two	hundred	randomly	assigned	participants	either	received	or	did	not	receive	the
intervention;	5	years	later	they	were	assessed	for	the	presence	of	Alzheimer’s	disease.	The	results	of	the
study	were	as	follows:

In	order	to	calculate	an	odds	ratio,	the	meta-analysts	first	determine	that	the	odds	against	a	participant	in
the	intervention	condition	having	Alzheimer’s	disease	were	3	to	1	(75	to	25).	The	odds	against	having
Alzheimer’s	disease	in	the	no-intervention	condition	were	1.5	to	1	(60	to	40).	In	this	case,	the	odds	ratio	is
2,	meaning	the	odds	of	finding	evidence	of	the	disease	in	the	no-intervention	group	were	twice	those	in
the	intervention	group.	When	the	odds	are	the	same	in	both	conditions	(i.e.,	when	the	treatment	had	no
effect	or	the	null	hypothesis	was	true),	the	odds	ratio	will	be	1.	The	odds	ratio	can	be	calculated	directly
from	the	table	by	dividing	the	product	of	the	main	diagonal	elements	by	the	product	of	the	off-diagonal
elements,	in	our	example	(75	×	40)/(60	×	25).

Another	measure	of	effect	for	two	dichotomous	variables	is	the	risk	ratio.	This	expresses	the	relative	risk
of	one	condition	against	the	other.	So,	in	the	example	about	the	risk	of	getting	Alzheimer’s	disease	among
the	elderly	adults	who	received	the	intervention	was	.25,	or	25	chances	in	100.	For	no	intervention,	the
risk	was	.40,	or	40	in	100.	The	risk	ratio	is	then	the	ratio	of	these	two	numbers:	.625	if	the	treated
condition	is	in	the	numerator	or	1.60	if	the	untreated	condition	is	in	the	numerator.

Again,	the	Practical	Meta-Analysis	Effect	Size	Calculator	(Wilson,	2015)	can	calculate	both	odds	ratios
and	risk	ratios	for	you.	Similar	to	the	r-index,	before	you	calculate	an	average	ratio,	the	individual	ratios
should	be	transformed	to	their	log	(also	provided	by	the	calculator).	Then,	the	average	should	be
transformed	back	for	purposes	of	interpretation.

Because	the	odds	ratio	is	used	less	often	in	the	social	sciences,	it	will	not	be	treated	extensively	in	the
next	section.	However,	most	of	the	techniques	discussed	in	the	next	section	are	easily	adapted	to	its	use.
There	are	many	other	metrics	that	can	be	used	when	two	dichotomous	variables	are	being	related	to	one
another;	Fleiss	and	Berlin	(2009)	provide	an	overview	of	numerous	effect	size	estimates	gauging	the
relationship	between	two	dichotomous	variables.

As	general	rules,	I	have	two	suggestions	when	you	use	effect	size	calculators	available	on	the	Internet.
First,	check	the	formulas	used	in	these	programs.	They	might	differ	in	some	ways	from	my	simple
formulas	given	above.	As	long	as	the	website	comes	from	a	reliable	source,	the	calculations	should	be
reliable	but	it	is	always	good	to	calculate	a	few	effect	sizes	by	hand.	This	way	you	can	be	more	confident
you	understand	how	your	data	are	being	analyzed	by	the	software	program.

Practical	Issues	in	Estimating	Effect	Sizes
The	formulas	for	calculating	effect	sizes	are	straightforward.	In	practice,	however,	meta-analysts	face
many	technical	issues	when	they	attempt	to	calculate	a	magnitude	of	effect.	The	most	important	of	these
is	missing	data,	which	I	discussed	in	Chapter	4	and	will	return	to	again	in	the	next	chapter.	Other	issues
arise	because	different	studies	use	somewhat	different	designs	and	because	of	some	unique
characteristics	of	the	effect	size	metrics	themselves.	I	will	describe	a	few	of	these.

Choosing	a	metric	when	studies	have	different	designs.	Some	primary	researchers	use	parametric
statistics	(those	that	assume	normal	distributions)	and	others	use	nonparametric	statistics	(ones	that
make	no	assumptions	about	distributions)	to	test	and	express	the	same	relationship.	For	instance,	this
would	be	the	case	if	one	researcher	measured	intrinsic	motivation	in	a	choice	study	by	calculating	the
average	time	each	participant	spent	on	the	chosen	task	during	a	free-play	period	(a	continuous	variable
dictating	the	use	of	parametric	tests),	and	another	simply	recorded	whether	each	participant	did	or	did
not	choose	a	particular	task	during	a	free-play	period	(a	dichotomous	variable	dictating	use	of
nonparametric	tests).	Most	often,	in	a	research	literature	statistical	techniques	based	on	one	set	of
assumptions	will	predominate	greatly	over	the	other.	Then,	the	statistics	from	the	lesser-used	approach
can	be	converted	to	their	dominant-approach	equivalents	and	aggregated	as	though	they	shared	the
dominant	approach’s	assumptions.	As	long	as	the	number	of	these	conversions	is	small,	there	will	be	no
great	distortion	of	results.	If	there	are	substantive	reasons	to	distinguish	between	the	outcome	variables
or	if	the	split	between	parametric	and	nonparametric	tests	is	relatively	even,	the	two	sets	of	studies	might
be	meta-analyzed	separately.

Related	to	the	issue	of	studies	that	use	different	statistical	procedures	is	that	different	primary



researchers	sometimes	convert	continuous	variables	to	dichotomous	ones.	For	instance,	some	primary
researchers	studying	the	relation	between	individual	differences	and	attitudes	toward	rape	might
dichotomize	personality	scores	into	high	and	low	scoring	groups.	Then,	they	might	use	a	t-test	to
determine	if	the	high	and	low	group	means	were	different	on	a	continuous	measure	of	attitudes	toward
rape.	This	suggests	that	a	d-index	would	be	most	appropriate	to	estimate	the	relation.	However,	other
researchers	might	leave	the	same	personality	scale	in	its	continuous	form	and	report	the	correlation
between	them.	Conveniently,	the	different	effect	size	metrics	are	easily	converted	from	one	to	the	other.
The	r-index	can	be	transformed	into	a	d-index	using	the	following	formula:

(10)
d=2r1−r2

or	the	d-index	into	the	r-index	using

(11)
r=dd2+a

where

a	=	a	correction	factor	to	adjust	for	different	sample	sizes	between	the	two	groups.

This	correction	factor,	a,	can	be	calculated	using	this	formula:

(12)
a=(n1+n2)2n1n2

where

all	variables	are	defined	as	above.

When	a	chi-square	statistic	associated	with	a	2	×	2	contingency	table	is	given,	the	r-index	can	be
estimated	as	follows:

(13)
r=χ2n

where

χ²	=	the	chi-square	value	associated	with	the	comparison,	and
n	=	the	total	number	of	observations	in	the	comparison.

If	you	search	the	Internet	using	“effect	size	converter,”	you	will	find	several	websites	that	will	allow	you
to	easily	convert	between	different	effect	size	metrics.

Even	though	metrics	can	be	converted	easily,	meta-analysts	still	must	pick	a	single	metric	in	which	to
describe	their	results.	The	choice	of	how	to	express	the	effect	size	should	be	determined	by	which	metric
best	fits	with	the	measurement	and	design	characteristics	of	the	variables	under	consideration.	So,	the
effect	size	metric	used	should	be	based	on	the	characteristics	of	the	conceptual	variables.	Therefore,	an
important	question	to	ask	when	evaluating	a	research	synthesis	is,

If	a	meta-analysis	was	performed,	was	an	appropriate	effect	size	metric	used?

When	we	related	individual	differences	to	rape	attitudes,	the	r-index	was	appropriate	most	often	(e.g.,
when	personality	dimensions	were	of	interest)	because	the	two	variables	were	conceptually	continuous	in
nature.	If	a	study	created	two	artificial	groups	by	dichotomizing	the	continuous	individual	difference
measure	into	high	and	low	scorers,	we	would	calculate	a	d-index	comparing	the	group	means,	then
convert	it	to	an	r-index	using	Formula	(11).

Estimating	effect	sizes	when	studies	compare	more	than	two	groups.	Suppose	we	find	a	study	of



interventions	to	promote	aerobic	exercise	that	compared	three	groups—say,	an	exercise	group,	an
information	group,	and	a	no-intervention	group.	In	this	instance,	we	likely	would	calculate	two	d-indexes,
one	comparing	exercise	to	no-intervention	and	another	comparing	the	exercise	intervention	to	the
information	intervention	(we	could	also	consider	comparing	the	information	intervention	to	no
intervention,	if	this	were	the	focus	of	our	meta-analysis).3	These	two	d-indexes	are	not	statistically
independent	since	both	rely	on	the	means	and	standard	deviations	of	the	same	intervention	group.
However,	this	complicating	factor	is	preferable	to	the	alternative	strategy	of	using	an	effect	size	metric
associated	with	a	multiple-group	inference	test.	Here	is	why.

One	effect	size	metric	that	can	be	used	when	more	than	two	groups	are	being	compared	simultaneously
involves	calculating	the	percentage	of	variance	in	the	dependent	variable	explained	by	group
membership.	This	effect	size	has	the	initially	appealing	characteristic	that	it	can	be	used	regardless	of	the
number	of	groups	in	the	study	(indeed,	it	can	be	used	with	two	continuous	measures	as	well).	So,	it	is
very	generally	applicable.	However,	it	has	the	unappealing	characteristic	that	the	resulting	effect	size
tells	us	nothing	about	which	of	the	multiple	conditions	has	the	highest	mean,	or,	more	specifically,	how
the	values	of	the	means	are	ordered	and	how	much	each	differs	from	the	others.	So,	identical	percentages
of	variance	explained	can	result	from	different	rank	ordering	of,	and	distances	between,	the	group	means.
It	is	then	impossible	for	the	meta-analysts	to	draw	conclusions	about	how	the	different	groups	stack	up
relative	to	one	another.	In	fact,	the	results	might	cancel	one	another	out	if	we	looked	at	single-degree-of-
freedom	comparisons,	suggesting	no	differences	between	groups.	The	percentage	of	variance	explained
would	not	catch	this.	This	is	why	it	is	rarely,	if	ever,	used	by	meta-analysts.

Estimating	effect	sizes	from	analyses	including	multiple	predictor	variables.	Another	way	that	research
design	influences	effect	sizes	involves	the	number	of	factors	employed	in	the	primary	data	analysis
procedures.	For	example,	a	primary	researcher	testing	the	effect	of	homework	versus	no-homework	on
achievement	might	also	include	individual	difference	variables—such	as	the	sex	or	previous	achievement
of	the	students,	or	even	their	pretest	scores	on	the	outcome	measure—in	a	multi-factored	analysis	of
variance.	The	primary	researcher	also	might	not	report	the	simple	means	and	standard	deviations	for	the
homework	and	no-homework	groups.	Meta-analysts	then	are	faced	with	two	choices.

First,	they	can	calculate	an	effect	size	estimate	based	on	the	F-test	reported	by	the	researchers.	However,
this	test	uses	an	error	term	that	has	been	reduced	by	the	inclusion	of	the	individual	difference	factors.
This	is	equivalent	to	reducing	the	size	of	the	estimate	of	Swithin	in	the	d-index	formula.	This	approach
creates	the	problem	that	different	effect	sizes	going	into	the	same	quantitative	synthesis	are	likely	to	be
known	to	differ	in	a	systematic	way—that	is,	in	how	the	within-group	standard	deviation	has	been
calculated.	Likely,	if	the	additional	factors	in	the	analysis	are	associated	with	variance	in	the	outcome
measure	(e.g.,	the	scores	on	a	unit	test),	then	this	study	will	produce	a	larger	effect	size	for	homework
than	a	study	that	did	not	include	these	additional	factors	in	the	analysis,	all	else	being	equal.

A	second	approach	is	to	attempt	to	retrieve	the	standard	deviations	that	would	have	occurred	had	all	the
extraneous	factors	been	ignored	(i.e.,	not	been	removed	from	the	error	term	used	to	calculate	the	F-test).
Whenever	possible,	this	strategy	should	be	used—that	is,	an	attempt	should	be	made	to	calculate	the
effect	size	as	though	the	comparison	of	interest	was	the	sole	comparison	in	the	analysis.	The	best	way	to
do	this	is	to	contact	the	authors	of	the	primary	research	and	see	if	they	will	share	the	data	you	need.
Perhaps	a	more	realistic	approach	is	to	adjust	the	effect	size	by	estimating	the	relationships	between	the
additional	variables	and	the	outcome	measure.	Borenstein	et	al.	(2009)	present	some	ways	to	calculate
these	estimates.	The	problem	here,	of	course,	is	that	the	resulting	estimate	of	the	effect	size	is	only	as
good	as	the	estimates	of	the	relationships	used	to	make	adjustments.

Practically	speaking,	then,	it	is	often	difficult	for	meta-analysts	to	retrieve	the	unadjusted	standard
deviation	estimates	for	the	two	groups	if	they	are	not	given	in	the	primary	research	report,	nor	is	a	simple
t-test	or	one-degree-of-freedom	F-test.	In	such	cases,	when	you	look	for	influences	on	study	outcomes,	you
should	either	(a)	leave	these	estimates	out,	if	they	are	few,	or	(b)	examine	whether	or	not	the	number	of
factors	included	in	the	analysis	is	associated	with	the	size	of	the	effect.	If	a	relation	is	found,	you	should
report	separately	the	results	obtained	from	analyses	of	studies	that	used	only	the	single	factor	of	interest.
So,	for	example,	in	the	meta-analysis	of	homework	research,	we	found	one	experimental	study	that
reported	the	effect	of	homework	only	in	an	analysis	of	covariance	with	several	covariates.	This	study’s
results	could	not	be	combined	with	studies	that	did	not	adjust	for	covariates.	We	also	found	other	studies
that	presented	results	regarding	the	relation	between	time	spent	on	homework	and	achievement	only	in
multiple	regression	analyses.	These	could	not	be	combined	with	the	studies	that	presented	simple
bivariate	correlations.

Adjusting	for	the	impact	of	methodological	artifacts.	The	magnitude	of	an	effect	size	will	also	be
influenced	by	the	presence	of	methodological	artifacts	in	the	primary	data	collection	procedures.	Schmidt
and	Hunter	(2015)	describe	10	such	artifacts	that	can	make	an	effect	size	smaller	than	it	might	otherwise
be.	These	include,	for	example,	errors	(lack	of	reliability)	in	the	measurement	of	the	independent	and
dependent	variable,	imperfect	construct	validity	of	measures,	dichotomizing	of	continuous	variables,	and
restrictions	in	the	range	of	sampled	values.



In	the	case	of	less-reliable	measures,	measures	with	more	error	are	less	sensitive	for	detecting
relationships	involving	its	conceptual	variables.	For	example,	assume	two	personality	dimensions	have
equal	true	relationships	with	attitudes	toward	rape.	However,	if	one	personality	variable	is	measured	with
more	error	than	the	other,	this	less-reliable	measure	will	produce	a	smaller	correlation,	all	else	being
equal.	So	you	might	estimate	the	impact	of	the	reliability	of	measures	on	effect	sizes	by	obtaining	the
reliabilities	(e.g.,	internal	consistencies)	of	the	various	measures.	Or,	if	the	reliabilities	of	some	measures
were	not	available	you	could	estimate	the	distribution	(mean	and	standard	deviation)	of	the	reliabilities.
Using	procedures	described	by	Schmidt	and	Hunter	(2015),	you	could	then	estimate	what	the	average
effect	sizes	would	be	if	all	measures	were	perfectly	reliable.	You	could	also	calculate	a	credibility	interval,
the	estimated	standard	deviation	of	the	disattenuated	effect	sizes.

Whether	effect	sizes	should	be	corrected	for	artifacts	depends	first	and	foremost	on	the	goal	of	the
primary	research	and	research	synthesis.	In	particular,	are	you	interested	in	the	relationship	between	the
constructs	that	underlie	the	measures	or	in	what	can	be	expected	in	the	real	world?	For	example,	the
amount	of	homework	students	do	and	their	subsequent	achievement	may	be	imperfectly	measured	but	if
the	synthesis	is	meant	to	describe	what	effect	of	homework	parents,	teachers,	and	student	might	expect
on	test	scores,	correcting	for	artifacts	is	inappropriate.4	On	the	other	hand,	the	meta-analysis	of	studies
of	the	effect	of	choice	on	motivation	might	legitimately	correct	for	unreliability	in	the	motivation
measures	because	they	are	interested	in	testing	a	theoretical	notion.	Error	in	the	measurements	might
lead	to	accepting	a	null	hypothesis	when,	in	fact,	it	should	be	rejected.

In	addition,	you	should	keep	in	mind	that	when	you	correct	for	artifacts,	your	results	are	only	as	good	as
your	estimates	of	the	impact	of	the	artifact.	If	the	measures	of	artifacts	are	unreliable	or	you	must
estimate	the	distribution	of	artifact	effects	based	on	limited	data,	it	might	be	good	to	perform	a	sensitivity
analysis—that	is,	to	conduct	your	analyses	with	high	and	low	estimates	of	the	artifact	correction	to	see
how	your	results	differ.

Coding	Effect	Sizes
The	statistics	you	need	to	calculate	effect	sizes	and	all	the	other	statistics	described	next	should	be
collected	as	part	of	your	more	general	coding	procedures.	For	example,	Table	6.2	provides	a	simple
example	of	the	information	on	the	statistical	results	of	studies	that	might	be	collected	by	study	coders.
Here,	the	example	involves	experimental	studies	of	the	effects	of	homework	on	achievement.	Most	meta-
analyses	in	which	two	conditions	are	being	compared	(having	a	choice	among	tasks,	participation	versus
no	participation	in	an	exercise	intervention)	would	look	very	similar.	Coding	sheets	for	correlational
studies	or	studies	relating	two	dichotomous	variables	would	also	be	similar,	but	these	might	be	even	a	bit
simpler	than	my	example	in	Table	6.2.	Some	of	the	information	on	the	coding	sheet	may	never	be	used
and	much	of	this	information	will	be	left	blank.	For	example,	when	studies	give	the	means	and	standard
deviations,	you	may	never	use	the	information	on	the	t-test.	However,	when	means	and/or	standard
deviations	are	missing,	you	will	need	the	information	on	the	null	hypothesis	significance	test	to	calculate
the	d-index.	Or	if	you	want	to	examine	whether	the	standard	deviations	in	the	experimental	and	control
group	are	roughly	equal,	you	will	need	this	regardless	of	how	you	calculate	the	d-index.	So,	you	might	not
know	exactly	what	information	is	important	to	you	until	after	you	have	begun	your	analysis.





Combining	Effect	Sizes	Across	Studies
Once	each	effect	size	has	been	calculated,	the	meta-analysts	next	average	the	effects	that	estimate	the
same	comparison	or	relationship.	It	is	generally	accepted	that	these	averages	should	weight	the
individual	effect	sizes	based	on	the	number	of	participants	in	their	respective	samples.	This	is	because
larger	samples	give	more	precise	population	estimates.	For	example,	a	d-index	or	r-index	based	on	500
participants	will	give	a	more	precise	estimate	of	its	underlying	population	effect	size	than	will	an	estimate
based	on	50	participants.	The	average	effect	size	should	reflect	this	fact.	So,	while	unweighted	average
effect	sizes	are	sometimes	presented	in	meta-analyses,	they	are	typically	accompanied	by	weighted
averages.

One	way	to	take	the	precision	of	the	effect	size	estimate	into	account	when	calculating	an	average	effect
size	is	to	multiply	each	estimate	by	its	sample	size	and	then	divide	the	sum	of	these	products	by	the	sum
of	the	sample	sizes.	However,	there	is	a	more	precise	procedure,	first	described	in	detail	by	Hedges	and
Olkin	(1985),	which	has	many	advantages	but	also	involves	more	complicated	calculations.

The	d-Index
For	the	d-index,	this	procedure	first	requires	the	meta-analyst	to	calculate	a	weighting	factor,	wi,	which	is
the	inverse	of	the	variance	associated	with	each	d-index	estimate.	It	can	be	calculated	taking	the	inverse



of	the	result	of	Formula	(4),	or	more	directly	by	using	the	following	formula:

(14)
Wi=2(ni1+ni2)ni1ni22(ni1+ni2)2+ni1ni2di2

where

nil	and	ni2	=	the	number	of	data	points	in	Group	1	and	Group	2	of	Study	i;	and
di	=	the	d-index	of	the	comparison	under	consideration.

While	the	formula	for	wi	looks	imposing,	it	is	really	a	simple	arithmetic	manipulation	of	three	numbers
available	whenever	a	d-index	is	calculated.	It	also	is	easy	to	program	a	statistical	software	package	to
perform	the	necessary	calculation.	Programs	designed	to	perform	meta-analysis	(e.g.,	Comprehensive
Meta-Analysis,	2015)	will	do	it	for	you	automatically.

Table	6.3	presents	the	group	sample	sizes,	d-indexes,	and	weighting	factors	(the	wis)	associated	with	the
results	of	seven	hypothetical	comparisons.	Let	us	assume	the	seven	comparisons	come	from	experiments
that	compared	the	effects	of	homework	versus	no	homework	on	a	measure	of	academic	achievement.	All
seven	of	the	experiments	produced	results	favoring	homework	assignments.	The	results	could	just	as
easily	have	come	from	seven	comparisons	of	groups	doing	aerobic	exercise	or	not,	and	the	measure	could
be	cognitive	functioning.	Or,	the	participants	in	one	group	in	Table	6.3	could	have	been	given	a	choice
between	two	tasks	while	the	other	group	was	given	no	choice	and	the	outcome	could	be	subsequent
interest	in	the	task.	It	is	good	to	look	at	the	hypothetical	data	with	multiple	concrete	examples	in	your
head.	That	way	you	can	see	the	conceptual	similarity	between	the	examples.	The	key	here	is	that	you
recognize	that	the	research	design	in	this	table	compares	two	group	means	on	a	continuous	variable.	If
for	some	reason	the	outcome	variable	was	a	dichotomy	(Did	the	student	pass	the	course?	Did	the	elderly
get	Alzheimer’s	disease?	Did	the	subject	choose	the	task	during	free	time?)	but	the	majority	of	outcomes
were	continuous,	the	odds	or	risk	ratio	could	have	been	converted	to	a	d-index	and	the	study	included
along	with	the	others.

To	further	demystify	the	weighting	factor,	note	in	Table	6.3	that	its	values	equal	approximately	half	the
average	sample	size	in	a	group	(it	becomes	less	similar	to	half	the	average	sample	size	as	the	sample
sizes	in	the	two	groups	become	more	different).	It	should	not	be	surprising,	then,	that	the	next	step	in
obtaining	a	weighted	average	effect	size	involves	multiplying	each	d-index	by	its	associated	wi	and
dividing	the	sum	of	these	products	by	the	sum	of	the	weights.	This	is	done	using	the	following	formula:
d.=Σi=1kdiwiΣi=1kwi

where

k	=	the	total	number	of	comparisons	and
all	other	terms	are	defined	as	above.



Table	6.3	shows	the	average	weighted	d-index	for	the	seven	comparisons	is	d.	=	.115.

One	advantage	of	using	the	wis	as	weights,	rather	than	sample	sizes,	is	that	the	wis	can	also	be	used	to
generate	a	confidence	interval	around	the	average	effect	size	estimate.	To	do	this,	an	estimated	variance
for	the	average	effect	size	must	be	calculated.	First,	the	inverse	of	the	sum	of	the	wis	is	found.	Then,	the
square	root	of	this	variance	is	multiplied	by	the	z-score	associated	with	the	confidence	interval	of	interest.
Thus,	the	formula	for	a	95%	confidence	interval	is

(16)
CId.95%=d.±zi1Σi=1kwi

where

zi	=	the	z-score	associated	with	the	confidence	interval	of	interest	and
all	terms	are	defined	as	above.

Table	6.3	reveals	that	the	95%	confidence	interval	for	the	seven	homework	comparisons	encompasses
values	of	the	d-index	.084	above	and	below	the	average	d-index.	Thus,	we	expect	95%	of	estimates	of	this
effect	to	fall	between	d	=	.031	and	d	=	.199.	Note	that	this	interval	does	not	contain	the	value	d	=	0.	It	is
this	information	that	can	be	taken	as	a	test	of	the	null	hypothesis	that	no	relation	exists	in	the	population,
in	place	of	directly	combining	the	significance	levels	of	null	hypothesis	tests.	In	this	example,	we	would
reject	the	null	hypothesis	that	there	was	no	difference	in	achievement	between	students	who	did	and	did
not	do	homework.

The	r-Index
The	procedure	for	finding	the	average	weighted	r-index	and	its	associated	confidence	interval	is	similar.
Here,	I	will	illustrate	how	to	do	this	when	each	r-index	is	first	transformed	to	its	corresponding	z-score,	zi.
In	this	case,	the	following	formula	is	applied:

(17)
z.=Σi=1k(ni−3)ziΣi=1k(ni−3)

where



ni	=	the	total	sample	size	for	the	ith	comparison	and
all	other	terms	are	defined	as	above.

Notice	that	formulas	for	calculating	average	effect	sizes	all	follow	the	same	form:	multiply	the	effect	size
by	a	weight,	sum	the	products,	and	divide	by	the	sum	of	the	weights.	So,	to	combine	the	r-indexes
directly,	multiply	each	by	its	weighting	factor—in	this	case,	like	the	d-index,	it	is	the	inverse	of	its
variance	(Formula	[7])—and	divide	the	sum	of	this	product	by	the	sum	of	the	weights,	just	as	was	done	for
the	d-index.

To	obtain	a	confidence	interval	for	the	average	z-score,	the	formula	is

(18)
CIz.95%=z.±1.96Σi=1k(ni−3)

where

all	terms	are	defined	as	above.

To	obtain	a	confidence	interval	for	the	r-indexes	combined	directly,	simply	substitute	the	sum	of	the
weights	in	the	denominator	of	Formula	(18).

Remember	that	it	is	important	to	transform	your	r-indexes	to	z-scores	before	you	begin	to	combine	them,
especially	if	many	of	the	correlations	are	above	.25.	Once	the	confidence	interval	has	been	established,
meta-analysts	convert	the	z-scores	back	to	the	correlations.

Table	6.4	presents	an	example	of	how	average	r-indexes	are	calculated.	For	example,	the	six	correlations
might	come	from	studies	relating	participants’	individual	differences	on	authoritarianism	and	their	score
on	a	measure	of	rape	myth	acceptance.	Or,	the	correlations	might	be	between	time	spent	on	homework
and	a	unit	test	score.	Again,	the	key	here	is	that	both	measures	are	continuous.	The	average	zi	was	207
with	the	95%	confidence	interval	ranging	from	.195	to	.219.	Note	that	this	confidence	interval	is	quite
narrow.	This	is	because	the	effect	size	estimates	are	based	on	large	samples.	Note	also	that	the	r-to-z
transformations	result	in	only	minor	changes	in	two	of	the	r-index	values.	This	would	not	be	the	case	had
the	r-indexes	been	larger.	As	with	the	earlier	example,	zi	=	0	is	not	contained	in	the	confidence	interval.
Therefore,	we	can	reject	the	null	hypothesis	that	there	is	no	relation	between	participants’	individual
differences	on	authoritarianism	and	their	scores	on	a	measure	of	rape	myth	acceptance	(or,	on	time	spent
on	homework	and	a	unit	test	score).

In	sum,	each	of	the	effect	size	metrics	can	be	averaged	across	studies	and	confidence	intervals	can	be
placed	around	these	mean	estimates.	Therefore,	when	evaluating	a	research	synthesis,	it	is	important	to
ask,



If	a	meta-analysis	was	performed,	(a)	were	average	effect	sizes	and	confidence	intervals	reported	and
(b)	was	an	appropriate	model	used	to	estimate	the	independent	effects	and	the	error	in	effect	sizes?

A	Note	on	Combining	Slopes	From	Multiple	Regressions
Up	to	this	point,	the	procedures	for	combining	and	comparing	study	results	have	assumed	that	the
measure	of	effect	is	a	difference	between	means,	a	correlation,	or	an	odds	ratio.	However,	regression
analysis	is	a	commonly	used	technique	in	the	social	sciences,	particularly	in	nonexperimental	studies
where	many	variables	are	used	to	predict	a	single	criterion.	Similar	to	the	standardized	mean	difference
or	correlation	coefficient,	the	regression	coefficient,	b,	or	the	standardized	regression	coefficient,	β,	are
also	measures	of	effect	size.	β	will	typically	be	of	most	interest	to	meta-analysts	because,	like	the	d-index
and	r-index,	it	standardizes	effect	size	estimates	when	different	measures	of	the	same	conceptual	variable
are	used	in	different	studies.	βrepresents	the	change	in	a	standardized	predictor	variable,	controlling	for
all	other	predictors,	given	one	standard	unit	change	in	the	criterion	variable.

Meta-analyses	using	regression	coefficients	as	effect	sizes	are	difficult	to	conduct	for	a	variety	of	reasons.
First,	with	regard	to	using	the	unstandardized	b-weight,	this	is	like	using	raw	score	differences	as
measures	of	effect—the	scales	of	the	predictor	and	outcome	of	interest	typically	vary	across	studies.
Directly	combining	them	can	lead	to	uninterpretable	results.	This	problem	can	be	overcome	by	using	β,
the	fully	standardized	estimate	of	the	slope	for	a	particular	predictor.5	But	still,	the	other	variables
included	in	models	using	multiple	regression	generally	differ	from	study	to	study	(note	the	related	earlier
discussion	about	multifactored	analyses	of	variance).	Each	study	may	include	different	predictors	in	the
regression	model	and,	therefore,	the	slope	for	the	predictor	of	interest	will	represent	a	different	partial
relationship	in	each	study	(Becker	&	Wu,	2007).	For	example,	in	our	meta-analysis	of	homework	and
achievement,	we	found	numerous	studies	that	performed	analyses	of	the	relationship	between	time	spent
on	homework	and	achievement	that	reported	β.	However,	each	was	based	on	a	regression	model	that
included	different	additional	variables.	This	made	it	questionable	that	the	βs	should	be	directly	combined.
So,	rather	than	average	them,	we	described	these	studies’	individual	βs	and	the	range	of	β-values	across
the	studies.	These	were	overwhelmingly	positive,	were	generally	based	on	very	large	samples,	and	used	a
variety	of	achievement	outcome	measures.	As	such,	they	strengthened	our	claim	about	the	positive
effects	of	homework	on	achievement	that	was	based	on	the	few	small	studies	that	purposively
manipulated	homework	and	tested	its	effect	on	a	single	limited	outcome	measure,	unit	test	scores.

Regression	slopes	can	be	directly	combined	when	(a)	the	outcome	and	predictor	of	interest	are	measured
in	a	similar	fashion	across	studies,	(b)	the	other	predictors	in	the	model	are	the	same	across	studies,	and
(c)	the	predictor	and	outcome	scores	are	similarly	distributed	(Becker,	2005).	It	is	rare	that	all	three	of
these	assumptions	are	met;	typically,	measures	differ	across	studies	and	regression	models	are	diverse	in
terms	of	which	additional	variables	are	included	in	them.

The	Synthesis	Examples
Both	the	standardized	mean	difference	and	the	correlation	coefficient	measures	of	effect	size	were	used
in	the	synthesis	examples.	In	the	synthesis	of	the	effects	of	homework,	the	d-index	was	used	to	express
the	findings	from	comparisons	that	purposively	manipulated	homework	and	then	measured	the	difference
in	terms	of	unit	test	scores.	The	weighted	average	d-index	across	five	studies	was	d.	=	.60,	with	a	95%
confidence	interval	encompassing	values	from	d	=	.38	to	d	=	.82.	Clearly,	then,	the	null	hypothesis	could
be	rejected.	The	homework	research	synthesis	also	used	correlation	coefficients	to	estimate	the
relationship	between	student	or	parent	reports	of	the	amount	of	time	spent	on	homework	and	a	variety	of
measures	of	achievement.	Of	69	such	correlations,	50	were	positive	and	19	were	negative.	The	weighted
average	correlation	was	r	=	.24	with	a	very	narrow	95%	confidence	interval,	encompassing	the	values
between	.24	and	.25.	The	confidence	interval	was	so	small	because	of	the	large	number	of	participants	in
these	studies;	the	adjusted	mean	sample	size	in	the	studies	was	7,742.

The	meta-analysis	of	individual	differences	and	attitudes	toward	rape	also	used	correlation	coefficients	as
the	measure	of	the	strength	of	relationships.	Among	the	many	correlations	involving	individual
differences,	we	found,	for	example,	that	across	15	correlations	older	participants	were	more	accepting	of
rape	than	younger	ones,	average	r.	=	.12	(95%	CI	=	.10−.14).

The	meta-analyses	on	(a)	interventions	to	increase	aerobic	exercise	among	adults	and	(b)	the	effects	of
choice	on	intrinsic	motivation	used	the	standardized	mean	difference	to	measure	effects.	The	weighted
average	g-index	across	29	studies	indicated	that	adults	who	participated	in	the	interventions	revealed
improvements	in	attention	and	processing	speed,	g.	=	.158	(95%	CI	=	.055−.260),	executive	functioning,
g.	=	.123	(95%	CI	=	.021−.225),	and	memory,	g.	=	.128	(95%	CI	=	.015−.241).	The	average	weighted
effect	size	for	the	47	estimates	of	the	impact	of	choice	on	measures	of	intrinsic	motivation	was	d.	=	.30
(95%	CI	=	.25−.35),	indicating	choice	led	to	greater	intrinsic	motivation.

Analyzing	Variance	in	Effect	Sizes	Across	Findings



The	analytic	procedures	described	thus	far	have	illustrated	how	to	estimate	effect	sizes,	average	them,
and	use	the	confidence	interval	surrounding	the	average	to	test	the	null	hypothesis	that	the	difference
between	two	means	or	the	size	of	a	correlation	is	0.	Another	set	of	statistical	techniques	helps	meta-
analysts	discover	why	effect	sizes	vary	from	one	comparison	to	another.	In	these	analyses,	the	effect	sizes
found	in	the	separate	comparisons	are	the	dependent	or	predicted	variables	and	the	characteristics	of	the
comparisons	are	the	predictor	variables.	The	meta-analysts	ask	whether	the	magnitude	of	relation
between	two	variables	in	a	comparison	is	affected	by	the	way	the	study	was	designed	or	carried	out.

One	obvious	feature	of	the	effect	sizes	in	Tables	6.3	and	6.4	is	that	they	vary	from	comparison	to
comparison.	An	explanation	for	this	variability	is	not	only	important,	but	also	represents	the	most	unique
contribution	of	research	synthesis.	By	performing	an	analysis	of	differences	in	effect	sizes,	the	meta-
analyst	can	gain	insight	into	the	factors	that	affect	the	strengths	of	relationships	even	though	these
factors	may	have	never	been	studied	in	a	single	experiment.	For	instance,	assume	that	the	comparisons
were	looking	at	the	effects	of	homework	and	the	first	four	studies	listed	in	Table	6.3	were	conducted	in
elementary	schools	while	the	last	three	studies	were	conducted	in	high	schools.	Is	the	effect	of	homework
different	for	students	at	different	grades?	This	question	could	be	addressed	through	the	use	of	the
analytic	techniques	described	next,	even	though	no	single	study	included	both	elementary	and	high
school	students	and	tested	to	see	if	the	grade	level	of	students	moderated	the	effect	of	homework.

The	techniques	that	follow	are	a	few	examples	of	many	procedures	for	analyzing	variance	in	effect	sizes.	I
do	not	cover	some	of	the	more	complex	synthesis	techniques	but	will	return	to	them	after	exposition	of
the	most	frequently	used	meta-analysis	techniques.

Traditional	Inferential	Statistics
One	way	to	analyze	the	variance	in	effect	sizes	is	to	apply	the	traditional	inference	procedures	that	are
used	by	primary	researchers.	Meta-analysts	interested	in	whether	an	exercise	intervention’s	effects	on
older	adults’	cognitive	functioning	were	stronger	for	males	than	for	females	might	do	a	t-test	on	the
difference	between	effect	sizes	found	in	comparisons	exclusively	using	males	versus	comparisons
exclusively	using	females.	Or,	if	the	meta-analysts	were	interested	in	whether	the	intervention	effect	size
was	influenced	by	the	length	of	the	intervention	and	the	measurement	of	cognitive	functioning,	the	meta-
analysts	might	correlate	the	length	of	treatment	in	each	comparison	with	its	effect	size.	In	this	instance,
the	predictor	and	dependent	variables	are	continuous,	so	the	significance	test	associated	with	the
correlation	coefficient	would	be	the	appropriate	inferential	statistic.	For	more	complex	questions,	a
synthesist	might	categorize	effect	sizes	into	multifactor	groupings—for	instance,	according	to	the	gender
and	age	of	participants—and	perform	an	analysis	of	variance	or	multiple	regression	on	effect	sizes.	For
Table	6.3,	if	a	one-way	analysis	of	variance	were	conducted	comparing	the	first	four	d-indexes	with	the
last	three	d-indexes,	the	result	would	not	be	statistically	significant.

Standard	inference	procedures	were	the	techniques	initially	used	by	some	meta-analysts	for	examining
variance	in	effects.	Glass	et	al.	(1981)	detailed	how	this	approach	is	carried	out.	However,	at	least	two
problems	arise	with	the	use	of	traditional	inference	procedures	in	meta-analysis.	The	first	is	that
traditional	inference	procedures	do	not	test	the	hypothesis	that	the	variability	in	effect	sizes	is	due	solely
to	sampling	error	(recall	the	discussion	earlier	in	this	chapter).	Therefore,	the	traditional	inference
procedures	can	reveal	associations	between	design	characteristics	and	effect	sizes	without	determining
first	whether	the	overall	variance	in	effects	is	greater	than	that	expected	by	sampling	error	alone.

Also,	because	effect	sizes	can	be	based	on	different	numbers	of	data	points	(sample	sizes),	they	can	have
different	sampling	variances	associated	with	them—that	is,	they	are	measured	with	different	amounts	of
error,	or	differing	levels	of	precision.	If	this	is	the	case	(and	it	often	is),	then	the	effect	sizes	violate	the
assumption	of	homogeneity	of	variance	that	underlies	traditional	inference	tests.	For	these	two	reasons,
traditional	inferential	statistics	are	no	longer	used	when	performing	a	meta-analysis.

Comparing	Observed	to	Expected	Variance:	Fixed-Effect	Models
In	place	of	traditional	procedures,	several	approaches	have	gained	acceptance.	One	approach	is	called
the	fixed-effect	model.	I	will	explain	this	simplest	model	first	and	then	explain	a	second	more	complex
model,	called	the	random-effects	model.	The	fixed-effect	model	compares	the	variation	in	the	observed
effect	sizes	with	the	variation	expected	if	only	error	due	to	the	sampling	of	participants	were	causing
differences	in	effect	size	estimates.	In	other	words,	it	makes	the	assumption	that	there	is	one	value	of	the
effect	size	underlying	all	the	observations	and	the	only	thing	making	the	observations	different	is
differences	in	the	participants	sampled	into	each	study.	This	approach	involves	calculating	(a)	the
observed	variance	in	the	effect	sizes	from	the	known	findings	and	(b)	the	expected	variance	in	these
effect	sizes	given	that	all	are	estimating	the	same	underlying	population	value.	Sampling	theory	allows	us
to	calculate	precise	estimates	of	how	much	sampling	variation	to	expect	in	a	group	of	effect	sizes	if	only
differences	between	the	participants	is	making	the	effect	sizes	different.	This	expected	value	is	a	function
of	the	average	effect	size	estimate,	the	number	of	estimates,	and	their	sample	sizes.



The	meta-analysts	then	compare	the	observed	with	the	expected	variance.	If	the	variance	estimates	are
deemed	not	to	differ	then	sampling	error	of	participants	is	the	simplest	explanation	for	the	variance	in
effect	sizes.	If	they	are	deemed	different—that	is,	if	the	observed	variance	is	(significantly)	greater	than
that	expected	due	to	sampling	error	of	participants,	then	the	meta-analysts	begin	the	search	for
systematic	influences	on	effect	sizes.	This	is	done	by	grouping	the	effect	sizes	and	asking	whether	the
group	averages	are	more	different	than	sampling	error	alone	would	predict.

Homogeneity	Analyses
A	homogeneity	analysis	is	a	formal	way	to	compare	the	observed	variance	to	that	expected	from	sampling
error.	It	involves	the	calculation	of	how	probable	it	is	that	the	variance	exhibited	by	the	effect	sizes	would
be	observed	if	only	sampling	error	was	making	them	different.	This	is	the	approach	used	most	often	by
meta-analysts,	so	I	will	provide	a	few	more	of	its	details.

Homogeneity	analysis	first	asks	the	question,	“Is	the	observed	variance	in	effect	sizes	statistically
significantly	different	from	that	expected	by	sampling	error	alone?”	If	the	answer	is	“no,”	then	some
statisticians	advise	that	the	meta-analysts	stop	the	analysis	there.	After	all,	chance	or	sampling	error	is
the	simplest	and	most	parsimonious	explanation	for	why	the	effect	sizes	differ.	If	the	answer	is	yes—that
is,	if	the	effect	sizes	display	significantly	greater	variability	than	expected	by	chance,	the	meta-analysts
then	begin	to	examine	whether	study	characteristics	are	systematically	associated	with	variance	in	effect
sizes.	Some	meta-analysts	believe	that	the	search	for	moderators	should	proceed	regardless	of	whether
sampling	error	is	rejected	as	a	plausible	sole	cause	of	variability	in	effect	sizes	if	there	are	good
theoretical	or	practical	reasons	for	choosing	moderators.	This	is	the	approach	I	usually	take.	Regardless
of	the	approach	you	prefer,	when	evaluating	a	research	synthesis,	it	is	important	to	ask,

If	a	meta-analysis	was	performed,	was	the	homogeneity	of	effect	sizes	tested?

Suppose	a	meta-analysis	reveals	a	homogeneity	statistic	that	has	an	associated	p-value	of	.05.	This	means
that	only	5	times	in	100	would	sampling	error	create	this	amount	of	variance	in	effect	sizes.	Thus,	the
meta-analysts	would	reject	the	null	hypothesis	that	sampling	error	alone	explains	the	variance	in	effect
sizes	and	they	would	begin	the	search	for	additional	influences.	They	would	then	test	whether	study
characteristics	explain	variation	in	effect	sizes.	Studies	would	be	grouped	by	common	features,	and	the
average	effect	sizes	for	groups	would	be	tested	for	homogeneity	in	the	same	way	as	the	overall	average
effect	size.

An	approach	to	homogeneity	analysis	will	be	described	that	was	introduced	simultaneously	by	Rosenthal
and	Rubin	(1982)	and	Hedges	(1982).	The	formula	presented	by	Hedges	and	Olkin	(1985;	also	see
Hedges,	1994)	will	be	given	here	and	the	procedures	using	d-indexes	will	be	described	first.

The	d-index.	In	order	to	test	whether	a	set	of	d-indexes	is	homogeneous,	the	meta-analysts	must	calculate
a	statistic	Hedges	and	Olkin	(1985)	called	Qt.	The	formula	is	as	follows:

(19)
Qt=Σi=1kwidi2−(Σi=1kwidi)2Σi=1kwi

where	all	terms	are	defined	as	above.

The	Q-statistic	has	a	chi-square	distribution	with	k	−	1	degrees	of	freedom,	or,	one	less	than	the	number
of	comparisons.	The	meta-analysts	refer	the	obtained	value	of	the	total	Q	statistic,	Qt,	to	a	table	of	(upper
tail)	chi-square	values.	If	the	obtained	value	is	greater	than	the	critical	value	for	the	upper	tail	of	a	chi-
square	at	the	chosen	level	of	significance,	the	meta-analysts	reject	the	hypothesis	that	the	variance	in
effect	sizes	was	produced	by	sampling	error	alone.	Table	6.5	presents	the	critical	values	of	chi-square	for
selected	probability	levels.





For	the	set	of	comparisons	given	in	Table	6.3,	the	value	of	Qt	equals	4.5.	The	critical	value	for	chi-square
at	p	<	.05	based	on	6	degrees	of	freedom	is	12.6.	Therefore,	the	hypothesis	that	sampling	error	explains
the	differences	in	these	d-indexes	cannot	be	rejected.

The	procedure	to	test	whether	a	methodological	or	conceptual	distinction	between	studies	explains
variance	in	effect	sizes	involves	three	steps.	First,	a	Q-statistic	is	calculated	separately	for	each	subgroup
of	comparisons.	For	instance,	to	compare	the	first	four	d-indexes	in	Table	6.3	with	the	last	three,	a
separate	Q-statistic	is	calculated	for	each	grouping.	Then,	the	values	of	these	Q-statistics	are	summed	to
form	a	value	called	Qw,	or	Q-within.	This	value	is	then	subtracted	from	Qt	to	obtain	the	Q	statistic	for	the
difference	between	the	two	group	means,	Qb,	or	Q-between:

(20)
Qb=Qt–Qw

where

all	terms	are	defined	as	above.

The	statistic	Qb	is	used	to	test	whether	the	average	effects	from	the	two	groupings	are	homogenous.	It	is
compared	to	a	table	of	chi-square	values	using	as	degrees	of	freedom	one	less	than	the	number	of
groupings.	If	the	average	d-indexes	are	homogeneous,	then	the	grouping	factor	does	not	explain	variance
in	effects	beyond	that	associated	with	sampling	error.	If	Qb	exceeds	the	critical	value,	then	the	grouping
factor	is	a	significant	contributor	to	variance	in	effect	sizes.

In	Table	6.3	the	Qb	comparing	the	first	four	and	last	three	d-indexes	is	.45.	This	result	is	not	significant
with	one	degree	of	freedom.	So,	if	the	first	four	effect	sizes	were	taken	from	studies	of	the	effect	of
homework	on	achievement	using	elementary	school	students	and	the	last	three	using	high	school
students,	we	could	not	reject	the	null	hypothesis	that	effect	sizes	were	equal	in	the	two	populations	of
students.

The	r-index.	The	analogous	procedure	for	performing	a	homogeneity	analysis	on	r-indexes	transformed	to
z-scores	involves	the	following	formula:

(21)
Qt=Σi=1k(ni−3)zi2−[Σi=1k(ni−3)zi]Σi=1k(ni−3)2

where

all	terms	are	defined	as	above.

To	compare	groups	of	r-indexes,	Formula	(21)	is	applied	to	each	grouping	separately,	and	the	sum	of
these	results,	Qw,	is	subtracted	from	Qt	to	obtain	Qb.

The	results	of	a	homogeneity	analysis	using	the	z-transforms	of	the	r-indexes	are	presented	in	Table	6.4.
The	Qt	value	of	178.66	is	highly	significant,	based	on	a	chi-square	test	with	5	degrees	of	freedom	(the
number	of	correlation	minus	one).	While	it	seems	that	a	range	of	r-indexes	from	.06	to	.27	is	not	terribly
large,	Qt	tells	us	that,	given	the	sizes	of	the	samples	on	which	these	estimates	are	based,	the	variation	in
effect	sizes	is	too	great	to	be	explained	by	sampling	error	alone.	Something	other	than	sampling	of
participants	likely	is	contributing	to	the	variance	in	r-indexes.

Suppose	we	know	that	the	first	three	correlations	in	Table	6.4	are	from	samples	of	high	school	students
and	the	last	three	are	from	elementary	school	students.	A	homogeneity	analysis	testing	the	effect	of	grade
level	on	the	magnitude	of	r-indexes	reveals	a	Qb	of	93.31.	This	value	is	highly	statistically	significant,
based	on	a	chi-square	test	with	one	degree	of	freedom.	For	high	school	students	the	average	weighted	r-
index	is	.253,	whereas	for	elementary	school	students	it	is	r	=	.136.	Thus,	the	null	hypothesis	can	be
rejected	and	the	grade	level	of	the	student	is	one	potential	explanation	for	the	variation	in	r-indexes.

Comparing	Observed	and	Expected	Variance:	Random-Effects	Models
An	important	decision	you	will	make	when	conducting	a	meta-analysis	involves	whether	a	fixed-effect	or
random-effects	model	should	be	used	to	calculate	the	variability	in	effect	size	estimates	averaged	across
studies.	As	I	discussed	above,	fixed-effect	models	calculate	only	error	that	reflects	variation	in	studies’
outcomes	due	to	the	sampling	of	participants.	However,	other	features	of	studies	also	can	be	viewed	as



influences	on	outcomes.	For	example,	the	studies	in	a	synthesis	of	homework	may	vary	by	the	length	of
the	assignment	and/or	subject	matter.	Exercise	interventions	may	vary	in	their	intensity	or	modality.
Choices	may	vary	in	number	or	domain.	These	variations	will	cause	variation	in	effect	sizes	not	due	to
sampling	of	participants.	However,	they	are	not	error	in	the	sense	of	being	chance	because	even	though
they	may	at	first	be	unexplained	they	may	also	be	systematic	in	ways	we	are	not	aware	of.	For	example,
more-intense	exercise	interventions	may	improve	cognitive	functioning	more	than	less-intense
interventions.

For	this	reason,	in	many	cases	it	may	be	most	appropriate	to	treat	studies	as	randomly	sampled	from	a
population	of	all	studies.	The	variation	that	might	be	added	to	the	estimate	of	error	due	to	variations	in
study	methods	is	ignored	when	a	fixed-effect	model	is	used.	In	a	random-effects	model	(Raudenbush,
2009),	study-level	variance	is	assumed	to	be	present	as	an	additional	source	of	random	influence.	The
question	you	must	answer,	then,	is	whether	you	believe	the	effect	sizes	in	your	data	set	are	noticeably
affected	by	study-level	influences.

Regrettably,	there	are	no	hard-and-fast	rules	for	making	this	determination.	Overton	(1998)	found	that	in
the	search	for	moderators,	fixed-effect	models	may	seriously	underestimate	error	variance	and	random-
effects	models	may	seriously	overestimate	error	variance	when	their	assumptions	are	violated.	Thus,
neither	can	be	chosen	because	it	is	statistically	more	justified.	In	practice,	many	meta-analysts	opt	for	the
fixed-effect	assumption	because	it	is	analytically	easier	to	manage.	But	some	meta-analysts	argue	that
fixed-effect	models	are	used	too	often	when	random-effects	models	are	more	realistic,	such	as	when
interventions	like	homework	or	exercise	programs	can	be	expected	to	have	different	empirical
realizations	from	one	study	to	another	in	ways	that	will	influence	their	effectiveness.	Others	counter	this
argument	by	claiming	that	a	fixed-effect	model	can	be	applied	if	a	thorough,	appropriate	search	for
moderators	of	effect	sizes	is	part	of	the	analytic	strategy—that	is,	if	the	meta-analysts	examine	the
systematic	effects	of	study-level	influences—and	in	this	way	make	moot	the	issue	of	random	effects	at	the
study	level.	The	fixed-effect	model	may	also	be	favored	if	the	number	of	effect	sizes	is	small,	making	it
difficult	to	achieve	a	good	estimate	of	variation	in	the	effect	sizes	at	the	study	level.

What	should	your	decision	be	based	on?	One	approach	is	to	decide	based	on	the	outcome	of	the	test	of
homogeneity	of	effects	using	a	fixed-effect	model;	if	the	hypothesis	of	homogeneous	effects	is	rejected
under	the	fixed-effect	assumption,	then	you	switch	to	a	random-effects	model.	However,	as	Borenstein	et
al.	(2009)	argue,	this	strategy	is	discouraged;	it	is	based	on	statistical	outcomes,	not	on	the	conceptual
characteristics	of	your	studies.	Many	researchers	interested	in	evaluating	applied	interventions	(such	as
homework)	often	choose	the	random-effects	model	because	they	believe	that	random	sampling	of	studies
is	more	descriptive	of	their	real-world	circumstances	and	also	will	lead	to	a	more	conservative	conclusion
about	the	range	of	impacts	the	intervention	might	have	(because	the	estimate	of	the	variation	around	the
average	estimate	is	larger	using	the	random-effects	model).	So,	if	you	suspect	a	large	influence	of	study-
level	sources	of	random	error,	then	a	random-effects	model	is	most	appropriate	in	order	to	take	these
sources	of	variance	into	account.

Other	researchers	studying	basic	social	processes—processes	that	likely	do	not	change	greatly	due	to	the
contexts	in	which	they	are	being	studied	(such	as,	perhaps,	tests	of	reaction	times)—tend	to	favor	fixed-
effect	models.	Hedges	and	Vevea	(1998)	stated	that	fixed-effect	models	are	most	appropriate	when	the
goal	of	the	research	is	“to	make	inferences	only	about	the	effect	size	parameters	in	the	set	of	studies	that
are	observed	(or	a	set	of	studies	identical	to	the	observed	studies	except	for	uncertainty	associated	with
the	sampling	of	subjects)”	(p.	3).	In	studies	of	basic	processes,	this	type	of	inference	might	suffice,
because	you	make	the	extra-statistical	assumption	that	the	relationship	you	are	studying	is	largely
insensitive	to	its	context.

To	summarize	then,	you	might	consider	applying	the	following	rules:

Do	not	use	the	outcome	of	a	fixed-effect	homogeneity	analysis	to	decide	whether	a	random-effects
analysis	is	called	for.	The	decision	should	be	based	on	the	nature	of	the	research	question.
In	most	instances	where	interventions	are	being	evaluated	or	the	research	takes	place	in	real-world
contexts	that	vary	from	one	another	in	important	ways,	random-effects	models	should	be	favored.
However,	if	the	number	of	studies	being	combined	is	small,	consider	using	a	fixed-effect	model;	the
estimate	of	study-level	variance	will	be	too	rough.
In	most	instances	where	laboratory	studies	of	basic	processes	are	being	combined,	fixed-effect
models	should	be	appropriate.	Here,	the	context	of	the	study	(study-level	variations)	should	be	less
consequential	to	study	findings.

Which	model	of	effects	you	use	and	the	set	of	assumptions	your	choice	is	based	on	needs	to	be
incorporated	into	the	interpretation	and	discussion	of	your	findings.	I	will	return	to	the	issue	of
interpreting	fixed-effect	and	random-effects	models	in	Chapter	7.

Calculating	random-effects	estimates	of	the	mean	effect	size,	confidence	intervals,	homogeneity	statistics,
and	moderator	analyses	is	computationally	complex.	Because	of	this	complexity,	the	formulas	I	have
provided	in	this	chapter	are	for	fixed-effect	models.	I	will	not	go	into	the	calculation	of	the	variance
estimate	in	random-effects	models	(see	Borenstein	et	al.,	2009,	if	you	are	interested)	but	conceptually	it



involves	calculating	the	variation	in	effect	sizes	(using	the	effect	size	as	the	unit	of	analysis)	and	adding
this	to	the	variation	due	to	sampling	of	participants	(the	fixed-effect).	Thankfully,	the	statistical	packages
developed	specifically	for	meta-analysis	and	the	program	macros	associated	with	more	general	statistical
packages	allow	you	to	conduct	analyses	using	both	fixed-effect	and	random-effects	assumptions.

I2:	The	Study-Level	Measure	of	Effect
It	may	have	occurred	to	you	that	meta-analysts	point	out	the	shortcomings	of	null	hypothesis	significance
testing	but	then	use	it	to	test	whether	groups	of	studies	have	significantly	different	average	effect	sizes.
This	is	only	partially	true.	Certainly,	a	good	meta-analysis	presents	the	confidence	interval	around	overall
estimates	of	effect	and	for	all	subgroups	when	a	moderator	of	effects	is	tested.	A	measure	of	effect	also
exists	for	quantifying	the	percentage	of	the	variance	in	a	set	of	studies	that	is	due	to	the	studies
themselves	and	not	sampling	error.	This	statistic	is	called	I2	and	is	calculated	as	follows:

(22)
I2=ΣQ–dfQ×100%

where

all	quantities	are	defined	as	above.

I2	tells	you	what	portion	of	the	total	variance	in	the	effect	sizes	is	due	to	variance	between	the	studies.
The	Cochrane	Collaboration	(Deeks,	Higgins,	&	Altman,	2008)	gives	a	rough	guide	to	when	the
percentage	of	study	variance	may	be	important.	In	addition	to	the	significance	of	the	Q-statistic,	it
suggests	that	I2	below	40%	might	not	be	important	while	I2	above	75%	suggests	considerable
heterogeneity.

Statistical	Power	in	Meta-Analysis
The	above	discussion	leads	naturally	into	a	consideration	of	the	power	of	meta-analyses	to	detect	effects.
Meta-analyses	have	different	statistical	power	for	answering	its	multiple	questions.	First,	meta-analysts
ask	the	question,	“What	is	the	average	effect	size	and	the	precision	of	this	estimate,	or,	alternatively,	with
what	certainty	can	we	reject	the	null	hypothesis?”	The	answer	to	this	question	will	depend	on	the	model,
fixed	or	random,	used	to	estimate	the	expected	variation	in	effects.	When	a	fixed-effect	model	is	used,	we
can	say	with	certainty	that	the	power	of	the	meta-analysis	to	detect	an	effect	and	the	precision	of	the
estimate	will	be	greater	in	the	meta-analysis	than	in	any	one	or	any	subset	of	the	primary	studies	going
into	the	research	synthesis.	This	is	because	the	meta-analytic	estimate	will	always	be	based	on	a	larger
sample	of	participants.	If	the	assumption	of	the	fixed-effect	model	is	true	(i.e.,	sampling	error	alone	is
making	sample	estimates	different)	the	meta-analysis	estimate	will	always	be	more	precise.

However,	this	is	not	necessarily	true	when	a	random-effects	model	is	employed.	Here,	the	variability	due
to	variations	in	study	characteristics	must	be	added	to	sampling	error	at	the	participant	level.	This	source
of	variance	is	not	present	in	any	one	study.	So,	if	study-level	variance	is	large	it	is	possible	when	we
calculate	the	precision	of	the	average	effect	size	that	the	precision	of	the	individual	studies	(or	one	or
some	of	them)	can	be	greater	than	the	precision	of	the	meta-analytic	effect	size	estimate.	You	can	think	of
it	this	way:	if	the	estimate	of	study-level	variation	adds	nothing	to	the	participant-level	variance,	then	a
fixed-effect	and	random-effects	model	will	provide	the	same	estimates	of	variability	(equal	to	participant
sampling	alone)	and	meta-analytic	estimates	of	effect	will	always	be	more	precise	than	any	single-study
estimate.	As	the	study-level	variability	moves	away	from	a	zero	contribution,	the	precision	of	the	meta-
analytic	estimate	decreases	and	at	some	point,	depending	on	the	amount	of	study-level	variability	and	the
number	and	sample	size	of	the	primary	studies,	may	become	less	precise	than	any	single	study	estimate.

Next,	meta-analysts	ask	whether	there	is	sufficient	power	to	detect	a	significant	Q-statistic,	or	to	reject
the	null	hypothesis	that	sampling	of	participants	alone	is	making	the	effect	sizes	different.	Similar	to
power	analysis	with	primary	data,	the	power	to	detect	a	difference	between	an	observed	Q-statistic	and
an	expected	one	is	a	function	of	the	number	of	effect	sizes	you	have,	the	sample	sizes	contributing	to
those	effects	sizes,	the	size	of	the	expected	study-level	variation	in	effects	(the	I2)	as	well	as	how	well	the
effects	conform	to	the	necessary	statistical	assumptions	(e.g.,	normal	distribution).

Finally,	meta-analysts	might	be	interested	in	the	power	to	detect	differences	between	groups	of	studies:
“Was	the	average	effect	in	the	group	of	Studies	A	different	from	the	average	effect	in	the	group	of	Studies
B?”	This	power	analysis	requires	a	variation	on	the	analyses	described	in	the	last	paragraph.

Conducting	power	analysis	in	meta-analysis	often	has	a	different	purpose	from	that	in	primary	research.
After	all,	meta-analysts	do	not	do	power	analysis	to	help	decide	how	many	studies	to	run.	Perhaps,	if	an
existing	literature	contains	a	very	large	number	of	studies,	the	meta-analyst	might	conduct	an	a	priori



power	analysis	to	determine	how	many	studies	to	sample	from	it.	Otherwise	meta-analytic	power	analyses
are	most	informative	as	guides	to	interpretation.	The	power	of	meta-analytic	tests	can	be	very	low,
especially	for	tests	of	moderators	of	study	effects	when	a	random-effects	model	is	used	and	the	number	of
studies	is	small.	By	conducting	such	an	analysis,	the	interpretation	of	the	results	can	include	the
possibility	that	accepting	the	null	hypothesis	might	lead	to	a	Type	II	error.

Meta-Regression:	Considering	Multiple	Moderators	Simultaneously
or	Sequentially
Homogeneity	statistics	can	become	unreliable	and	difficult	to	interpret	when	the	meta-analysts	wish	to
test	more	than	one	moderator	of	effect	sizes	at	a	time.	Hedges	and	Olkin	(1985)	present	one	technique	for
testing	multiple	moderators.	The	model	uses	simultaneous	or	sequential	tests	for	homogeneity.	It	removes
the	variance	in	effect	sizes	due	to	one	moderator	and	then	removes	from	the	remaining	variance	any
additional	variance	due	to	the	next	moderator.	So,	for	example,	if	we	were	interested	in	whether	the	sex
of	the	student	influenced	the	effect	of	homework	on	achievement	after	controlling	for	the	student’s	grade
level,	we	would	first	test	grade	level	as	a	moderator,	then	test	the	student’s	sex	as	a	moderator	within
each	grade-level	category.

This	procedure	can	be	difficult	to	apply	because	characteristics	of	studies	are	often	correlated	with	one
another	and	the	number	of	effect	sizes	in	categories	of	interest	rapidly	becomes	small.	For	example,
suppose	we	wanted	to	test	whether	the	effect	of	homework	on	achievement	is	influenced	by	both	the
grade	level	of	students	and	the	type	of	achievement	measure.	We	might	find	that	these	two	study
characteristics	are	often	confounded—more	studies	of	high	school	students	used	standardized	tests	while
more	studies	of	elementary	school	students	used	class	grades.	Studies	of	homework	with	elementary
school	students	using	standardized	tests	may	be	rare.	The	problem	would	get	even	worse	if	yet	a	third
variable	were	added	to	the	mix.

Another	statistical	approach	to	testing	multiple	moderators	of	effect	sizes	simultaneously	or	sequentially
is	called	meta-regression.	As	the	name	implies,	this	approach	is	the	meta-analysis	analog	to	multiple
regression.	In	meta-regression,	the	effect	sizes	are	the	criterion	variables	and	the	study	characteristics
are	the	predictors	(Hartung,	Knapp,	&	Sinha,	2008).	Meta-regression	shares	with	multiple	regression	all
the	problems	regarding	the	interpretation	of	the	analysis’	output	when	the	predictors	are	intercorrelated
(a	likely	characteristic	of	research	synthesis	data)	and	when	the	number	of	data	points	(effect	sizes	in
meta-regression)	are	small.

Still,	meta-regression	is	becoming	more	popular,	especially	now	that	meta-analysis	programs	are	available
to	help	you	do	them.	One	important	consideration	regarding	when	to	use	meta-regression	involves	the
effect	sizes	that	serve	as	the	dependent	variables.	Remember	that	the	regression	analysis	makes	the
assumption	that	the	effect	sizes	are	independent	of	one	another.	In	Chapter	4	I	discussed	the	units	of
analysis	in	research	synthesis	and	some	strategies	for	minimizing	multiple	outcomes	that	come	from	the
same	sample	of	participants.	In	meta-regression	it	is	not	unusual	for	the	outcome	rather	than	the	sample
to	be	used	as	the	independent	unit.	This	requires	adjustments	lest	the	estimates	of	error	appear	to	be
more	precise	than	they	actually	are	(see	Hedges,	Tipton,	&	Johnson,	2010).

Another	approach	to	addressing	the	intercorrelation	of	study	characteristics	is	to	first	generate
homogeneity	statistics	for	each	characteristic	separately,	by	repeating	the	calculation	of	Q-statistics.
Then,	when	the	results	concerning	moderators	of	effect	sizes	are	interpreted,	the	meta-analysts	also
examine	a	matrix	of	intercorrelations	among	the	moderators.	This	way,	the	meta-analyst	can	alert	readers
to	study	characteristics	that	may	be	confounded	and	draw	inferences	with	these	relations	in	mind.	For
example,	we	followed	this	procedure	in	the	meta-analysis	of	the	effects	of	choice	on	intrinsic	motivation.
We	found	that	the	effect	of	giving	choices	influenced	children’s	intrinsic	motivation	more	positively	than
adults’	motivation.	But	we	found	also	that	the	age	of	the	participant	was	associated	with	the	setting	in
which	the	choice	experiment	was	conducted;	studies	with	adults	were	more	likely	to	be	conducted	in	a
traditional	lab	setting	than	were	studies	with	children.	This	means	that	the	different	effect	of	choice	on
motivation	for	children	and	adults	might	not	be	due	to	the	participants’	age,	but	rather	to	where	the	study
was	conducted.

In	sum,	then,	you	need	to	make	many	practical	decisions	when	conducting	a	meta-analysis,	and	the
guidelines	for	making	these	are	not	as	clear	as	we	would	like.	While	it	is	clear	that	a	formal	analysis	of
the	variance	in	effect	sizes	is	an	essential	part	of	any	research	synthesis	containing	large	numbers	of
comparisons,	it	is	also	clear	that	you	must	take	great	care	in	the	application	of	these	statistics	and	in	the
description	of	how	they	were	applied.

Using	Computer	Statistical	Packages
Needless	to	say,	calculating	average	weighted	effect	sizes	and	homogeneity	statistics	by	hand	is	time-
consuming	and	prone	to	error.	Today,	it	is	unheard	of	for	meta-analysts	to	compute	statistics	for
themselves,	as	I	have	done	in	the	previous	examples.	Still,	it	is	good	for	you	to	examine	my	examples



carefully	and	conduct	the	calculation	yourself,	so	that	you	understand	them.	Then,	the	output	of	computer
packages	should	be	more	interpretable	by	you	and	you	should	be	more	able	to	notice	any	errors	that
might	have	occurred.

Conveniently,	the	major	computer	statistics	packages	have	macros	developed	that	allow	their	use	to
conduct	meta-analysis.	For	example,	meta-analyses	can	be	run	using	Excel	spreadsheets	(Neyeloff,	Fuchs,
&	Moreira,	2012).	David	Wilson’s	very	helpful	website	provides	free	macros	for	use	with	the	SPSS,
STATA,	and	SAS	software	packages.	These	packages	are	generally	familiar	to	most	social	scientists.	A
book	is	available	that	shows	how	to	use	the	statistical	package	R	to	conduct	meta-analysis	(Chen	&	Peace,
2013;	see	also	http://cran.r-project.org/web/views/MetaAnalysis.html	for	a	useful	compendium	of	R
programs).	A	free	(though	support	comes	at	a	cost)	program	dedicated	to	meta-analysis	alone	is	called
RevMan	(http://tech.cochrane.org/revman/download).	There	are	also	stand-alone	meta-analysis	packages
that	can	be	purchased	such	as	Comprehensive	Meta-Analysis	(2015)	that	will	produce	all	the	results	for
you,	and	give	you	many	options	for	how	to	carry	out	your	analyses.

Regardless	of	how	the	statistics	are	calculated,	when	evaluating	a	research	synthesis,	you	should	ask,

Were	(a)	study	design	and	implementation	features	along	with	(b)	other	critical	features	of	studies,
including	historical,	theoretical,	and	practical	variables,	tested	as	potential	moderators	of	study
outcomes?

Some	Advanced	Techniques	in	Meta-Analysis
Several	more	advanced	approaches	to	meta-analysis	have	emerged	in	recent	years.	These	typically
require	more	advanced	statistical	knowledge	and	complex	calculations	than	can	be	covered	in	an
introductory	textbook.	Below,	I	will	provide	a	brief	conceptual	introduction	to	some	of	the	approaches
receiving	the	most	attention.	Because	the	complex	meta-analysis	techniques	require	full	treatment	to	be
applied	and	are	still	used	relatively	infrequently	I	will	not	dwell	on	them	here.	If	you	are	interested	in
more	advanced	techniques,	you	should	first	examine	these	in	more	detailed	treatments,	especially	those
given	in	Cooper	et	al.	(2009)	and	the	references	provided	below.

Hierarchical	Linear	Modeling
One	new	approach	to	meta-analysis	involves	using	hierarchical	linear	modeling	(Raudenbush	&	Bryk,
2001).	This	approach	treats	study	outcomes	as	nested	data;	for	example,	students’	achievement	scores
can	be	viewed	as	influenced	by	(nested	within)	classroom-level	variables	that	are	themselves	influenced
by	school	characteristics	and	at	a	higher	level	still	by	the	community	the	school	is	in.	In	the	case	of	meta-
analysis,	a	study	outcome	(an	individual	effect	size)	can	be	viewed	as	nested	within	a	sample	of
participants	who	in	turn	are	nested	within	a	study	(and	even	within	a	laboratory	that	has	conducted
multiple	studies).	Again,	the	computations	for	the	analyses	are	complex	but	this	approach	is	conceptually
appealing	and	meta-analyses	using	the	hierarchical	linear	modeling	approach	are	used	increasingly
frequently.

Model-Based	Meta-Analysis
The	statistical	procedures	for	meta-analysis	described	so	far	apply	to	synthesizing	two-variable
relationships	from	experimental	and	descriptive	research.	Meta-analysis	methodologists	are	working	to
extend	statistical	synthesis	procedures	to	more-complex	ways	to	express	the	relations	between	variables.
Previously,	I	discussed	the	difficulties	in	synthesizing	the	effect	sizes	associated	with	a	variable	that	was
included	in	a	multiple	regression.	But	what	if	the	question	of	interest	involves	integrating	the	output	of
entire	regression	equations?	For	example,	suppose	we	were	interested	in	how	five	personality	variables
(perhaps	those	in	the	five-factor	model)	jointly	predicted	attitudes	toward	rape?	Here,	we	would	want	to
develop	from	a	meta-analysis	a	regression	equation,	or	perhaps	a	structural	equation	model,	based	on	the
results	of	a	set	of	studies.	To	do	so,	we	would	need	to	integrate	results	of	studies	concerning	not	one
correlation	between	the	variables	but	rather	an	entire	matrix	of	correlations	relating	all	the	variables	in
the	model	of	interest	to	us.	It	is	this	correlation	matrix	that	forms	the	basis	of	the	multiple	regression
model.

The	techniques	used	to	do	this	are	still	being	explored,	as	are	the	problems	meta-analysts	face	in	using
them.	For	example,	can	we	simply	conduct	separate	meta-analyses	for	each	correlation	coefficient	in	the
matrix	and	then	use	the	resulting	matrix	to	generate	the	regression	equation?	The	answer	is	“probably
not.”	The	individual	correlations	would	then	be	based	on	different	samples	of	participants	and	a
regression	analysis	using	them	can	produce	nonsensical	results,	such	as	prediction	equations	that	explain
more	than	100%	of	the	variance	in	the	criterion	variable.	Still,	there	are	circumstances	under	which	these
applications	of	meta-analysis	to	complex	questions	can	produce	highly	informative	results.	Becker	(2009)
presents	an	in-depth	examination	of	the	promise	and	problems	involved	in	model-driven	meta-analysis.6



Bayesian	Meta-Analysis
Another	approach	to	meta-analysis	involves	applying	Bayesian	statistics	rather	than	the	frequentist
approach	used	in	the	statistics	described	in	this	book.	In	a	Bayesian	approach	(Sutton	&	Abrams,	2013;
Sutton	et	al.,	2000),	the	researcher	must	first	establish	a	prior	estimation	of	the	parameters	of	the	effect
size.	These	can	include	both	the	magnitude	and	the	distribution	of	effect	sizes.	The	Bayesian	priors	can	be
based	on	past	research,	and	not	necessarily	on	research	that	used	identical	conceptual	variables	or
empirical	realizations.	For	example,	the	prior	estimation	of	the	effect	of	an	exercise	intervention	might	be
based	on	other	interventions	to	improve	cognitive	functioning,	such	as	puzzle	solving.	Or,	the	estimation
might	be	based	on	samples	drawn	from	other	populations	(e.g.,	using	adult	samples	to	estimate	the	effect
of	choice	on	children’s	motivation)	or	even	on	subjective	beliefs	and	personal	experience	(e.g.,	teachers’
thoughts	on	the	degree	to	which	homework	affects	achievement).	The	meta-analysis	then	tells	the
synthesists	how	these	prior	beliefs	should	change	in	light	of	the	new	empirical	evidence.	The	need	for
prior	estimations	in	Bayesian	analyses	is	seen	as	both	a	strength	and	a	weakness	of	the	approach.	The
computations	for	Bayesian	analyses	are	also	very	complex	and	less	intuitively	accessible	than	the
traditional	meta-analysis	methods	but	can	yield	trustworthy	and	interpretable	results	(Jonas	et	al.,	2013).

Meta-Analysis	Using	Individual	Participant	Data
The	most	desirable	technique	for	combining	results	of	independent	studies	is	to	have	available	and	to
integrate	the	raw	data	from	each	relevant	comparison	or	estimate	of	a	relationship	(Cooper	&	Patall,
2009).	Then,	the	individual	participant	data	(IPD)	can	be	placed	into	a	new	primary	data	analysis	that
employs	the	comparison	that	generated	the	data	as	a	blocking	variable.	When	IPD	are	available,	the
meta-analysis	can	perform	subgroup	analyses	that	were	not	conducted	by	the	initial	data	collectors	in
order	to

Check	data	in	the	original	studies,
Ensure	that	the	original	analyses	were	conducted	properly,
Add	new	information	to	the	data	sets,
Test	with	greater	power	variables	that	moderate	effect	sizes,	and
Test	for	both	between-study	and	within-study	moderators.

Obviously,	instances	in	which	the	integration	of	IPD	can	be	achieved	are	rare.	IPD	are	seldom	included	in
research	reports,	and	attempts	to	obtain	raw	data	from	researchers	often	end	in	failure.	However,	the
incentives	and	requirements	for	sharing	data	are	increasing,	as	conditions	both	for	receiving	research
support	and	for	publishing	findings.	If	IPD	are	retrievable,	the	meta-analyst	still	must	overcome	the	use	of
different	metrics	in	different	studies,	an	important	limit	to	the	ability	to	statistically	combine	the	results.
Also,	meta-analyses	using	IPD	can	be	expensive	because	of	the	recoding	involved	in	getting	the	data	sets
into	similar	form	and	content.	So	it	is	unlikely	that	meta-analyses	using	IPD	will	be	replacing	the	meta-
analysis	techniques	described	previously	any	time	soon.	Still,	meta-analysis	of	IPD	is	an	attractive
alternative,	one	that	has	received	considerable	attention	in	the	medical	literature,	and	likely	will	become
more	attractive	as	the	availability	of	raw	data	sets	improves.	Also,	methods	are	appearing	that	allow
synthesists	to	use	both	IPD	from	some	studies	and	aggregate	data	from	others	(Pigott,	2012).

Cumulating	Results	Across	Meta-Analyses
The	terms	cumulative	or	prospective	meta-analyses	are	used	to	refer	to	meta-analyses	that	are	updated	as
new	evidence	on	a	topic	becomes	available.	The	methods	for	conducting	the	new	analyses	can	be	the
same	as	those	used	originally,	or	can	be	changed,	perhaps	to	reflect	advances	in	meta-analytic	methods	or
to	conduct	new	analyses	that	time	and	experience	suggest	are	warranted;	for	example,	looking	at	a	new
moderators	variable	that	recent	theorizing	suggests	might	influence	results.	Many	cumulative	meta-
analyses	include	the	year	of	the	study	as	a	moderating	variable	to	determine	whether	the	evidence
suggests	the	impact	of	the	treatment	or	intervention	is	changing	over	time.	Cumulative	meta-analyses	are
much	more	frequently	encountered	in	the	medical	than	social	sciences.	In	fact,	the	Cochrane
Collaboration	(2015)	requires	that	synthesists	who	submit	to	its	database	commit	to	updating	the	reports
as	new	information	appears.

Overviews	of	reviews.	Overviews	of	reviews,	sometimes	also	called	reviews	of	reviews,	umbrella	reviews,
or	meta-reviews,	compile	evidence	from	multiple	research	syntheses.	Cooper	and	Koenka	(2012)
catalogued	several	reasons	why	an	overview	of	reviews	might	be	undertaken.	These	included	(a)	to
summarize	evidence	from	more	than	one	research	synthesis	focused	on	the	same	or	overlapping	research
problems	or	hypotheses,	(b)	to	compare	findings	and	resolve	discrepancies	in	the	conclusions	drawn	in
more	than	one	research	synthesis,	and	(c)	to	catalog	the	mediators	and	moderators	tested	in	research
syntheses	on	the	same	research	problem.	Like	all	research	syntheses,	there	are	sound	methods	for
conducting	an	overview	of	reviews	that	are	unique	to	them.	For	example,	overviewers	must	evaluate	the
quality	of	the	constituent	research	syntheses.

Overviews	have	their	limitations	as	well.	For	example,	the	studies	included	in	an	overview	of	reviews	can



be	quite	old,	considering	not	only	that	the	studies	must	be	conducted,	but	also	that	the	review	of	studies
then	must	be	conducted	and	this	is	the	evidence	in	the	overview.	Still,	the	same	forces	that	are	giving	rise
to	the	need	for	research	syntheses,	the	expanding	research	literature,	will	also	provide	impetus	for	a
growing	appearance	of	overviews	of	reviews.

Second-order	meta-analysis.	One	type	of	overview	is	called	a	second-order	meta-analyses.	It	involves
using	the	outcomes	of	meta-analyses	as	the	data	in	yet	another	meta-analysis	(Schmidt	&	Hunter,	2015).
In	second-order	meta-analyses	the	average	effects	found	in	meta-analyses	conducted	in	the	same	problem
area	are	themselves	combined.	Obviously,	second-order	meta-analysis	is	used	when	neither	the	IPD	nor
even	the	study-level	results	from	the	constituent	meta-analyses	can	be	retrieved.

One	problem	faced	by	second-order	meta-analysts	(as	well	as	any	overviewer,	only	more	formally)	is	how
to	handle	meta-analyses	with	overlapping	evidence—that	is,	the	constituent	meta-analyses	were
conducted	on	the	same	set	or	a	substantial	subset	of	the	same	primary	studies.	The	approaches	that	have
been	taken	to	this	nonindependence	of	evidence	include	simply	ignoring	the	lack	of	independence,
removing	meta-analyses	that	are	highly	redundant	with	others,	and	conducting	sensitivity	analyses—that
is,	doing	the	second-order	meta-analysis	with	different	sets	of	constituent	meta-analyses.	Also,	the	ability
of	second-order	meta-analyses	to	look	at	influences	on	the	average	effect	sizes	can	be	limited	because	the
moderating	and	mediating	variables	examined	must	exist	at	the	level	of	the	meta-analyses	that	go	into	the
second-order	meta-analysis,	not	the	individual	studies.	Still,	second-order	meta-analyses	can	be	done
(e.g.,	Tamim,	Bernard,	Borokhovski,	Abrami,	&	Schmid,	2011).	When	the	more	desirable	alternatives	are
not	feasible,	you	should	give	consideration	to	doing	a	second-order	meta-analysis.

Exercises
1.	 For	the	findings	in	the	table	below,	what	is	the	average	weighted	d-index?
2.	 Are	the	effect	sizes	of	the	seven	studies	homogeneous?	Calculate	your	answer	both	by	hand	and	by	using	a	computer

statistical	package.

Notes
1.	And	they	permit	you	to	choose	whether	you	want	the	test	to	estimate	sampling	error	based	on
participant	variation	alone	or	both	participant	and	study	variation.	I	will	return	to	this	choice	later,	when	I
discuss	fixed-effect	and	random-effects	models.

2.	Throughout	this	chapter	and	forward,	I	will	use	the	terms	findings,	studies,	and	comparisons
interchangeably	to	refer	to	the	discrete,	independent	hypothesis	tests	or	estimates	of	relationships	that
compose	the	input	for	a	meta-analysis.	I	do	this	for	exposition	purposes,	though	sometimes	these	terms
can	have	different	meanings;	for	example,	a	study	could	contain	more	than	one	comparison	between	the
same	conditions.

3.	Borenstein	et	al.	(2009)	present	formulas	for	how	to	combine	two	nonindependent	effect	sizes.	These
authors	also	provide	formulas	for	how	to	combine	effect	sizes	for	different	outcome	measures	taken	on
the	same	sample	and	for	the	same	outcome	measure	taken	on	the	same	sample	but	at	different	times.	The
d-index	for	any	two-group	comparison	can	also	be	calculated	if	you	have	the	means,	samples	sizes,	and
overall	multi-degree-of-freedom	F-test	using	the	Practical	Meta-Analysis	Effect	Size	Calculator	(Wilson,
2015).

4.	Remember	that	measurement	reliability	can	also	be	used	as	a	moderator	of	effects,	so	without
adjusting	measures	you	could	group	them	by	reliability	and	ask,	“Is	the	size	of	the	impact	of	homework
related	to	the	reliability	of	the	achievement	measure?”

5.	Half-standardizing	is	an	alternative	way	to	create	similar	slopes	when	only	outcomes	are	dissimilar	(see



Greenwald,	Hedges,	&	Laine,	1996).

6.	The	use	of	structural	equation	modeling	in	meta-analysis	is	an	emerging	area	that	incorporates	many	of
the	approaches	I	have	described,	not	only	to	exploring	multiple	relationships	in	the	same	analysis,	but
also	different	model	assumptions	and	even	missing	data	techniques	(Cheung,	2015).	Synthesists	will	need
a	comfortable	knowledge	of	these	methods	of	structural	equation	modeling	before	they	can	use	them
successfully,	though	they	can	use	the	available	software	packages	to	carry	them	out.



7	Step	6	Interpreting	the	Evidence

What	conclusions	can	be	drawn	about	the	cumulative	state	of	the	research	evidence?

Primary	Function	in	Research	Synthesis
To	summarize	the	cumulative	research	evidence	with	regard	to	its	conclusiveness,	generalizability,	and	limitations

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
Variation	in	(a)	criteria	for	labeling	results	as	important	and	(b)	attention	to	details	of	studies	might	lead	to	differences	in
interpretation	of	findings.

Questions	to	Ask	When	Interpreting	the	Cumulative	Evidence	in	the
Research	Synthesis

1.	 Were	analyses	carried	out	that	tested	whether	results	were	sensitive	to	statistical	assumptions	and,	if	so,	were
these	analyses	used	to	help	interpret	the	evidence?

2.	 Did	the	research	synthesists	(a)	discuss	the	extent	of	missing	data	in	the	evidence	base	and	(b)	examine	its
potential	impact	on	the	findings	of	the	synthesis?

3.	 Did	the	research	synthesists	discuss	the	generality	and	limitations	of	the	synthesis’	findings?
4.	 Did	the	synthesists	make	the	appropriate	distinction	between	study-generated	and	synthesis-generated	evidence

when	interpreting	the	synthesis’	results?
5.	 If	a	meta-analysis	was	performed,	did	the	synthesists	(a)	contrast	the	magnitude	of	effects	with	other	related	effect

sizes	and/or	(b)	present	a	practical	interpretation	of	the	significance	of	the	effects?

This	chapter	describes
How	to	account	for	missing	data
Statistical	sensitivity	analysis
Generalization	and	specification	of	findings
Study-generated	and	synthesis-generated	evidence
Substantive	interpretation	of	effect	sizes

Properly	interpreting	the	results	of	your	research	synthesis	will	require	you	to	carefully	(a)	state	the
claims	you	want	to	make	based	on	the	evidence,	(b)	specify	what	results	warrant	each	claim,	and	(c)	make
explicit	any	appropriate	qualifications	to	claims.	In	this	chapter	I	discuss	five	important	issues	related	to
the	interpretation	of	results	in	research	synthesis:

The	impact	of	missing	data	on	conclusions
The	sensitivity	of	your	conclusions	to	changes	in	assumptions	about	the	statistical	characteristics	of
your	data
Your	ability	to	generalize	your	conclusions	to	people	and	circumstances	not	included	in	the
constituent	studies
Whether	conclusions	are	based	on	study-generated	or	synthesis-generated	evidence
The	substantive	interpretation	of	effect	sizes

Missing	Data
Even	after	the	careful	planning,	searching,	and	coding	of	research	reports,	missing	data	can	influence	the
conclusions	drawn	from	research	syntheses.	When	data	are	systematically	missing,	not	only	is	the	amount
of	evidence	you	gathered	reduced	but	the	representativeness	of	your	results	may	be	compromised.	In
Chapter	4	I	discussed	the	issue	of	missing	data	and	suggested	a	few	ways	to	address	the	problem	when
you	code	studies.	But	even	these	techniques	for	estimating	missing	data	do	not	solve	the	problem	entirely.
You	do	not	have	an	equal	chance	of	retrieving	every	study,	so	there	might	be	some	studies	completely
missing	from	your	data	set	(Rosenthal,	1979,	called	this	the	file	drawer	problem).	Also,	in	some	instances
studies	you	do	have	may	have	collected	data	on	some	outcomes	and	tested	them	but	then	failed	to	give
any	indication	of	this	in	the	report.	These	completely	missing	results	cannot	be	estimated	by	the
procedures	described	in	Chapter	4.	Compounding	the	problem	is	the	fact	that	in	many	instances	a
disproportionate	number	of	completely	missing	results	will	be	associated	with	studies	that	use	small
sample	sizes	and	have	statistically	nonsignificant	inference	tests	(Borenstein	et	al.,	2009).	As	such,	they
would	tend	to	be	the	smaller	effect	sizes	in	the	distribution	of	estimates.	This	means	the	effect	sizes	you
do	find	may	overestimate	the	true	population	value.

Yet,	there	are	some	things	you	can	do.	A	number	of	graphical	and	statistical	techniques	can	be	used	to
assess	the	possible	existence	of	completely	missing	data	and	its	implications	for	the	interpretation	of	your
results.	It	is	good	practice	to	apply	at	least	one	of	these	to	your	data.	These	techniques	include	the	Rank



Correlation	Test	(Begg	&	Mazumdar,	1994),	the	Linear	Regression	Method	(Egger,	Davey	Smith	&
Minder,	1997),	the	Funnel	Plot	Regression	Method	(Macaskill,	Walter,	&	Irwig,	2001),	and	the	Trim-and-
Fill	Method	(Duval	&	Tweedie,	2000a,	2000b).	All	of	these	methods	have	been	shown	to	have	strengths
and	weaknesses	depending	on	the	characteristics	of	the	literature	they	are	applied	to	(Kromrey	&
Rendina-Gobioff,	2006).	I	refer	you	to	Publication	Bias	in	Meta-Analysis	(Rothstein	et	al.,	2005)	for	a
thorough	but	accessible	treatment	of	ways	to	prevent,	assess,	and	adjust	for	missing	data	due	to
publication	bias.

The	method	we	have	found	especially	useful	is	the	Trim-and-Fill	Method	(Duval	&	Tweedie,	2000a,
2000b).	Though	not	perfect,	the	Trim-and-Fill	Method	makes	reasonable	assumptions	about	the	missing
data,	is	intuitively	appealing,	and	is	easy	to	understand.	The	Trim-and-Fill	Method	tests	whether	the
distribution	of	effect	sizes	used	in	the	analyses	is	consistent	with	the	distribution	that	would	be	predicted
if	the	estimates	were	symmetrically	distributed	around	their	mean.	If	the	distribution	of	observed	effect
sizes	is	found	to	be	asymmetric	in	some	way—indicating	possible	missing	effect	sizes	caused	by	a	search
limitation	or	by	data	censoring	on	the	part	of	primary	researchers—the	Trim-and-Fill	Method	provides
ways	to	estimate	the	values	for	missing	studies	that	would	improve	the	symmetry	of	the	distribution.
Then,	after	imputing	these	values,	it	permits	you	to	estimate	the	impact	of	data	censoring	on	the	observed
mean	and	variance	of	effect	sizes.	Duval	(2005)	gives	a	good	introduction	to	how	to	carry	out	the	analysis.
It	can	also	be	carried	out	using	the	Comprehensive	Meta-Analysis	(2015)	software	program.

In	our	homework	meta-analysis,	we	conducted	trim-and-fill	analyses	using	the	five	effect	sizes	we	found
for	studies	that	manipulated	whether	or	not	students	received	homework.	Figure	7.1	shows	the	results	of
the	analyses	using	a	funnel	plot	(to	be	discussed	shortly).	You	can	see	that	the	trim-and-fill	analysis
suggested	that,	if	the	distribution	of	effect	sizes	were	truly	symmetrical,	two	studies	might	be	missing
from	the	left	side	of	the	funnel	plot.	Methods	are	provided	to	calculate	what	these	values	might	be	(under
both	fixed-effect	and	random-effects	models),	and	then	recalculate	average	effect	sizes	and	confidence
intervals.	In	this	case,	recalculating	the	average	homework	effect	produced	a	smaller	average	effect	size
(d	=	.48)	but	one	whose	confidence	interval	still	did	not	include	zero.	Thus,	this	technique	for	estimating
completely	missing	effect	sizes	leaves	us	more	confident	that	our	results	would	not	change	substantively
had	the	missing	data	been	found.

Figure	7.1	Example	of	a	Trim-and-Fill	Funnel	Plot

Regardless	of	the	techniques	you	use,	you	are	obligated	to	discuss	whether	data	might	have	been	missing
either	because	of	missing	reports	or	analyses	not	reported	in	the	individual	study	reports	you	do	have,
how	you	handled	it,	and	why	you	chose	to	treat	the	missing	data	the	way	you	did.	Thus,	an	important
question	to	ask	about	missing	data	when	evaluating	research	syntheses	is,

Did	the	research	synthesists	(a)	discuss	the	extent	of	missing	data	in	the	evidence	base	and	(b)
examine	its	potential	impact	on	the	synthesis’	findings?

Statistical	Sensitivity	Analyses
The	next	important	step	in	the	interpretation	of	data	from	meta-analyses	also	is	undertaken	as	part	of
data	analysis:	the	performance	of	statistical	sensitivity	analyses.	Statistical	sensitivity	analyses	are	used
to	determine	whether	and	how	the	conclusions	of	your	analyses	might	differ	if	they	were	conducted	using
different	statistical	procedures	or	different	assumptions	about	the	data.	There	are	numerous	decisions
you	make	about	how	to	analyze	your	data	that	are	candidates	for	sensitivity	analysis.	For	example,	the



calculation	of	weighted	and	unweighted	effect	sizes	can	be	considered	a	form	of	sensitivity	analysis.
When	you	present	these	measures	of	central	tendency	and	their	confidence	intervals	calculated
differently,	in	essence	you	are	answering	the	question,	“Do	I	come	to	a	different	conclusion	about	the
average	effect	size	when	I	ignore	the	precision	of	the	individual	effect	size	estimates	than	when	I	take
their	precision	into	account?”

You	might	also	consider	(as	we	did	in	our	meta-analysis	of	the	association	between	the	time	students
spend	on	homework	and	achievement)	conducting	your	analyses	twice,	once	using	a	fixed-effect	model
and	once	using	a	random-effects	model.	Rather	than	choosing	a	single	model	for	error,	we	chose	to	apply
both	models	to	our	data.	By	employing	this	sensitivity	analysis,	differences	in	results	based	on	which	set
of	assumptions	about	error	was	used	could	then	be	part	of	our	interpretation	of	results.	If	an	analysis
revealed	that	a	finding	was	significant	under	fixed-effect	assumptions	but	not	under	random-effects
assumptions,	this	result	suggests	that	the	significant	finding	relates	only	to	what	past	studies	have	found
but	not	necessarily	to	the	likely	results	of	a	broader	universe	of	similar	studies.	For	example,	we	found
that	a	small	negative	association	between	time	on	homework	and	achievement	for	elementary	school
students	was	statistically	significant	using	a	fixed-effect	model,	but	the	association	was	not	significant
using	a	random-effects	model.	A	similar	set	of	results	occurred	for	this	association	when	parents	reported
time	on	homework.	Also,	we	found	that	of	four	moderator	variables	that	produced	significant	effects	using
a	fixed-effect	model,	two	were	also	significant	using	a	random-effects	model	(the	association	was	stronger
for	high	school	than	elementary	school	students	and	when	students	reported	time	on	homework	than
when	parents	were	reporters),	while	two	were	not	significant	using	the	random-effects	model	(the	type	of
outcome	measure	and	the	subject	matter).	Sensitivity	analyses	can	also	be	conducted	using	different
assumptions	and	techniques	to	estimate	missing	data.

Each	time	you	do	a	sensitivity	analysis,	you	are	seeking	to	determine	whether	a	particular	finding	is
robust	across	analyses	conducted	with	different	sets	of	statistical	assumptions.	In	the	interpretation	of
evidence,	a	finding	that	a	conclusion	does	not	change	using	different	statistical	tests	or	assumptions
means	greater	confidence	can	be	placed	in	the	conclusion.	If	results	are	different	under	different
assumptions,	this	suggests	a	caution,	or	different	interpretation,	is	needed	when	you	share	your	results
with	the	users	of	your	synthesis.	So,	another	question	to	ask	when	you	evaluate	the	interpretation	of
results	in	research	synthesis	is,

Were	analyses	carried	out	that	tested	whether	results	were	sensitive	to	statistical	assumptions	and,	if
so,	were	these	analyses	used	to	help	interpret	the	evidence?

Specification	and	Generalization
Research	synthesis,	like	any	research,	involves	specifying	the	targeted	participants,	program	or
intervention	types,	occasions,	settings,	and	outcomes.	When	you	interpret	your	results,	you	must	assess
whether	and	how	well	each	of	the	target	elements	is	represented	in	the	evidence	base.	For	example,	if
you	were	interested	in	making	claims	about	the	effects	of	choice	on	motivation,	you	would	need	to	note
whether	important	age	groups	were	included	or	missing	from	the	samples	of	participants.

The	trustworthiness	of	any	claim	about	the	generality	of	a	research	finding	will	be	compromised	if	the
elements	in	the	accessed	samples	are	not	representative	of	the	target	elements,	be	they	targeted	people,
programs,	settings,	times,	or	outcomes.	Thus,	you	may	find	you	need	to	respecify	your	covered	elements
once	your	data	analysis	is	complete.	For	example,	if	only	college	students	were	used	in	studies	of	beliefs
about	rape,	then	either	any	claims	about	the	relationship	must	be	restricted	to	this	particular	type	of
participant	or	the	rationale	for	extrapolation	beyond	the	included	type	of	participants	must	be	provided	in
your	interpretation	of	the	data.

Your	permissible	generalizations	in	a	research	synthesis	are	constrained	by	the	types	of	elements	sampled
by	primary	researchers.	Still,	generalization	in	research	synthesis	injects	a	note	of	optimism	into	the
discussion.	There	is	good	reason	to	believe	research	syntheses	will	pertain	more	directly	to	the	target
participants,	programs,	settings,	times,	and	outcomes—or	to	more	subgroups	within	these	targets—than
will	the	separate	primary	studies.	The	cumulative	literature	can	contain	studies	conducted	on	participants
and	programs	with	different	characteristics	at	different	times	and	in	different	settings	using	different
outcome	measures.	For	certain	topics	containing	numerous	replications,	participants	and	circumstances
accessible	to	the	synthesists	may	more	closely	approximate	the	targeted	elements	than	does	any
individual	primary	study.	For	example,	if	some	studies	of	aerobic	exercise	programs	use	treadmills	in	a
gym	and	others	use	riding	a	bike	outdoors,	then	you	can	ask	whether	program	effects	were	similar	or
different	across	the	two	types	of	exercises	and	their	context,	a	question	unanswerable	by	the	individual
studies.

Integrating	Interaction	Results	Across	Studies
A	problem	in	interpreting	the	results	of	research	syntheses	that	is	related	to	the	issue	of	generalization



concerns	the	interpretation	of	interactions.	Often,	the	integration	of	interaction	results	in	research
synthesis	is	not	as	simple	as	averaging	the	effect	sizes	from	each	study.	Figure	7.2	illustrates	the	problem
by	presenting	the	results	of	two	hypothetical	studies	comparing	the	effects	of	homework	versus	in-school
study	on	students’	ability	to	retrieve	the	covered	material	from	memory.	These	two	studies	tested	whether
the	effect	of	the	two	instructional	strategies	was	mediated	by	the	delay	between	when	the	instruction
occurred	and	when	the	measure	of	retention	was	taken.	In	Study	1,	retention	was	compared	across
students	at	both	one	and	eight	weeks	after	the	intervention.	In	Study	2,	the	intervals	of	delay	were	one
and	four	weeks.	Study	1	might	have	produced	no	significant	main	effect	but	a	significant	interaction
involving	the	measurement	interval	while	Study	2	might	have	reported	only	a	significant	main	effect.

If	you	uncovered	these	two	studies	and	did	not	examine	the	precise	form	of	the	data,	you	might	be
tempted	to	conclude	that	they	produced	inconsistent	results.	However,	an	examination	of	Figures	7.2(A)
and	7.2(B)	illustrates	why	this	might	not	be	an	appropriate	interpretation.	The	results	of	Study	2	would
have	closely	approximated	those	of	Study	1	had	the	measurement	delay	in	Study	2	been	the	same	as	that
in	Study	1.	Note	that	the	slopes	for	the	lines	for	the	two	groups	in	Study	1	and	Study	2	are	nearly
identical.

Figure	7.2	Results	of	Two	Hypothetical	Studies	Comparing	the	Effects	of	Homework	and	In-School	Study
on	Retention

This	example	demonstrates	that	synthesists	should	not	assume	that	different	strengths	of	interaction
uncovered	by	different	studies	necessarily	imply	inconsistent	results.	Synthesists	need	to	examine	the
differing	ranges	of	values	of	the	variables	employed	in	different	studies,	be	they	measured	or
manipulated.	If	possible,	you	should	chart	results	taking	the	different	levels	into	account.	In	this	manner,
one	of	the	benefits	of	research	synthesis	is	realized.	While	one	study’s	authors	might	conclude	that
measurement	delay	has	no	effect	on	the	ability	to	retrieve	information	from	memory	when	homework	and
in-school	study	are	compared	and	a	second	study’s	authors	might	conclude	such	an	interaction	exists,	a
research	synthesist	could	discover	that	the	two	results	are	in	fact	perfectly	consistent.

This	benefit	of	research	synthesis	also	highlights	the	importance	of	primary	researchers	presenting
detailed	information	concerning	the	levels	of	variables	used	in	their	studies.	Research	synthesists	cannot
conduct	an	across-study	analysis	similar	to	my	example	without	this	information.	If	the	researchers	in
Study	1	and	Study	2	neglected	to	specify	their	range	of	measurement	delays—perhaps	they	simply	said
they	compared	“short”	delays	with	“longer”	delays—the	commensurability	of	the	results	would	have	been
impossible	to	demonstrate.

I	should	mention	that	variations	in	ranges	of	values	for	variables	also	can	produce	discrepancies	in	results
involving	two-variable	or	main-effect	relationships.	For	example,	had	Study	1	included	a	retention
measurement	at	one	week,	Study	2	at	four	weeks,	and	a	third	study	at	eight	weeks,	the	three	studies
would	have	produced	three	different	results.	In	such	a	case,	we	would	hope	that	the	research	synthesists
would	examine	measurement	delay	as	a	moderator	variable	and	reveal	the	influence	it	had	on	study
results.	I	mention	here	the	impact	of	ranges	in	values	in	the	case	of	interactions	because	this	is	the
circumstance	under	which	the	problem	is	least	likely	to	be	recognized	and	is	most	difficult	to	remedy
when	it	is	discovered.

In	general,	then,	the	next	question	to	ask	when	evaluating	the	interpretation	of	a	research	synthesis	is,

Did	the	research	synthesists	discuss	the	generality	and	limitations	of	the	synthesis	findings?

Study-Generated	and	Synthesis-Generated	Evidence



In	Chapter	2	I	made	the	important	point	that	research	syntheses	can	contain	two	different	sources	of
evidence	about	the	research	problem	or	hypothesis.	Study-generated	evidence	is	present	when	a	single
study	contains	results	that	directly	test	the	relation	being	considered.	Synthesis-generated	evidence	does
not	come	from	individual	studies	but	rather	from	the	variations	in	procedures	across	studies.	I	noted	that
only	study-generated	evidence	based	on	experimental	research	allows	you	to	make	statements	concerning
causality.	I	return	to	the	point	here	to	emphasize	that	making	the	distinction	between	what	evidence	in
your	synthesis	supports	causal	relationships	and	what	evidence	does	not	is	an	important	aspect	of	proper
interpretation	of	your	results.	Therefore,	the	next	important	question	to	ask	when	evaluating	the
interpretation	of	evidence	in	a	research	synthesis	is,

Did	the	synthesists	make	the	appropriate	distinction	between	study-generated	and	synthesis-
generated	evidence	when	interpreting	the	synthesis’	results?

The	Substantive	Interpretation	of	Effect	Size
In	quantitative	syntheses,	one	function	of	a	discussion	section	is	the	interpretation	of	the	size	of	reported
effects,	be	they	the	magnitudes	of	group	differences,	correlations,	or	odds	ratios.	Once	you	have
calculated	effect	sizes,	how	do	you	know	if	they	are	large	or	small,	meaningful	or	trivial?	Since	statistical
significance	cannot	be	used	as	a	benchmark—small	effects	can	be	statistically	significant	and	large
effects	nonsignificant—a	set	of	rules	must	be	established	for	determining	the	explanatory	or	practical
importance	of	a	given	effect	magnitude.1

The	Size	of	the	Relationship
To	help	interpret	effect	sizes,	social	scientists	have	applied	labels	that	describe	the	size	of	the	relationship
between	two	variables.	Jacob	Cohen	provided	the	first	guides	to	interpreting	effect	sizes	in	this	way	in	the
1977	edition	of	his	book	on	statistical	power	analysis	(reprinted	as	Cohen,	1988).	He	proposed	a	set	of
values	to	serve	as	definitions	of	small,	medium,	and	large	effects.	Cohen	recognized	that	judgments	of
largeness	and	smallness	are	relative.	In	order	to	make	them,	a	comparison	between	two	items	is	required,
and	the	choice	of	a	contrasting	element	for	an	observed	effect	could	be	governed	by	many	different	rules.
Interestingly,	however,	Cohen	did	not	intend	his	labels	to	serve	as	guides	for	substantive	interpretation	by
social	scientists.	Rather,	he	intended	his	rules	to	assist	with	power	analyses	in	planning	future	studies,	a
very	different	objective.	However,	since	they	have	been	used	so	often	for	substantive	interpretation,	we
should	look	at	their	characteristics.

In	defining	the	adjectives	for	magnitude,	Cohen	compared	different	average	effect	sizes	he	had
encountered	in	the	behavioral	sciences.	He	defined	a	small	effect	as	d	=	.2	or	r	=	.1	(equivalent	values),
which	his	experience	suggested	were	typical	of	those	found	in	personality,	social,	and	clinical	psychology
research.	A	large	effect	of	d	=	.8	or	r	=	.5	was	more	likely	to	be	found	in	sociology,	economics,	and
experimental	or	physiological	psychology.	Medium	effects,	d	=	.5	and	r	=	.3,	fell	between	these	extremes.
According	to	Cohen,	then,	a	social	psychologist	studying	the	impact	of	choice	on	intrinsic	motivation
might	interpret	an	effect	size	of	d	=	.2	to	be	small	when	compared	with	all	behavioral	science	effects	but
about	average	when	compared	with	all	other	effects	in	social	psychology.

Cohen	(1988)	was	careful	to	stress	that	his	conventions	were	to	be	used	“only	when	no	better	basis	for
estimating	the	ES	[effect	size]	is	available”	(p.	25).	Today,	with	so	many	meta-analytic	estimates	of	effects
available,	other	more	closely	related	contrasting	effects	often	can	be	found.	So,	when	you	interpret	the
magnitude	of	effects,	it	is	most	informative	to	use	contrasting	elements	that	are	more	closely	related	to
your	topic	than	to	use	Cohen’s	benchmarks.

For	example,	our	meta-analysis	of	the	effect	of	choice	on	motivation	revealed	an	effect	size	of	d	=	.30
using	a	fixed-effect	model	and	.36	using	a	random-effects	model.	This	indicates	that	on	average
participants	scored	about	a	third	of	a	standard	deviation	higher	on	a	motivation	measure	when	given	a
choice	of	tasks	than	when	no	choice	was	offered.	Using	Cohen’s	guide,	we	would	label	this	effect	small.
However,	other	contrasting	elements	might	be	available	to	us.	These	might	come	from	other	meta-
analyses	that	looked	at	entirely	different	ways	to	motivate	people	to	do	tasks,	such	as	providing	rewards.
Thus,	one	way	to	interpret	the	effect	of	choice	would	be	to	ask	whether	it	revealed	smaller	or	larger
effects	than	other	contextual	manipulations	meant	to	increase	motivation.

Alternatively,	other	meta-analyses	might	share	the	same	treatment	but	vary	in	outcome	measure.	For
example,	some	studies	of	choice	may	have	examined	participants’	self-esteem	after	being	given	a	choice
rather	than	their	subsequent	motivation.	Then,	a	good	interpretation	would	consider	whether	choice-
promoting	manipulations	have	a	smaller	or	larger	effect	on	motivation	than	on	self-esteem.	Of	course,
these	types	of	interpretations	could	occur	among	results	within	the	same	research	synthesis	as	well;	for
example,	the	measures	of	exercise	effects	on	different	cognitive	functions.	Is	the	effect	larger	on	memory
than	executive	functioning?



When	you	cannot	find	meta-analyses	this	closely	aligned	with	your	topic,	you	might	be	able	to	find
compendia	of	meta-analyses	on	more	distant	but	related	topics	that	are	still	closer	to	your	topic	than
Cohen’s	benchmarks.	For	example,	Lipsey	and	Wilson	(1993)	compiled	the	results	of	302	meta-analyses
across	the	fields	of	education,	mental	health,	and	organizational	psychology.	In	education,	the	authors
cataloged	181	average	effect	sizes.	The	middle	one-fifth	of	these	ranged	from	d	=	.35	to	d	=	.49.	The	top
one-fifth	of	effect	size	estimates	were	above	d	=	.70,	and	the	bottom	one-fifth	were	below	d	=	.20.	So,	in
our	meta-analysis	of	experimental	studies	examining	the	effects	of	homework	on	student’s	grades	on	unit
tests,	we	reported	an	average	d-index	of	about	.60.	Comparing	this	to	Lipsey	and	Wilson’s	estimates,	we
might	label	the	homework	effect	as	above	average	for	educational	interventions.	There	are	also	now
compendia	of	meta-analysis	that	relate	to	broad	topics	but	are	narrower	than	the	fields	covered	by	Lipsey
and	Wilson	(e.g.,	Hattie,	2008,	synthesizes	800	meta-analyses	on	visual	learning	and	achievement).

Effect	sizes	also	need	to	be	interpreted	in	relation	to	the	methodology	used	in	the	primary	research.
Cohen	(1988)	acknowledged	this	when	he	pointed	out	that	field	studies	should	expect	smaller	effects	than
laboratory	studies	(p.	25).	In	addition,	studies	that	provide	an	intervention	in	greater	frequency	and
intensity	(e.g.,	more-frequent	or	more-intense	aerobic	exercise)	would	have	greater	likelihood	of	showing
a	large	effect	than	more	conscribed	versions	of	another	intervention,	even	if	the	interventions	were
equally	effective	when	tested	under	comparable	conditions.	Or	studies	that	remove	more	error	from	the
measurement	of	the	outcome	(perhaps	by	using	a	more	reliable	measure)	should	produce	larger	effects
than	studies	that	allow	more	extraneous	influences	on	outcomes.	Therefore,	research	design	differences
must	be	considered	when	drawing	a	conclusion	about	the	relative	size	of	effects;	more-sensitive	research
designs	and	measures	that	therefore	have	less	random	error	can	be	expected	to	reveal	larger	effect	sizes,
all	else	being	equal.

In	sum,	then,	the	choice	of	contrasting	elements	is	critical	in	interpreting	the	magnitude	of	an	effect.	In
fact,	almost	any	effect	can	be	deemed	large	or	small	depending	on	the	chosen	contrast.	In	addition,
contrasting	elements	often	vary	on	dimensions	other	than	the	impact	of	the	manipulations	or	predictor
variables	they	are	sizing	up.	It	is	essential	that	(a)	contrasting	elements	be	chosen	that	hold	constant
those	aspects	of	research	design	that	are	known	to	influence	effect	size	estimates	but	are	not	inherent	to
the	intervention	itself	or	(b)	differences	in	research	design	be	considered	when	the	contrast	between
effects	is	interpreted.

Using	Adjectives	to	Convey	the	Practical	Significance	of	Effects
Researchers	are	well	aware	that	the	term	significant	effect	has	a	different	meaning	for	statisticians	than
it	does	for	the	broader	public.	To	those	who	calculate	social	science	statistics,	a	significant	effect	typically
means	it	is	one	that	permits	the	rejection	of	the	null	hypothesis	with	some	minimal	potential	for	error,
usually	1	chance	in	20.	To	the	general	public,	however,	the	meaning	of	the	word	significant	is	different.
The	Merriam-Webster	(2015a)	online	dictionary	defines	significance	first	as	“having	meaning”	and	second
as	“having	or	likely	to	have	influence	or	effect:	important.”	Most	researchers	recognize	this	distinction
between	colloquial	and	scientific	usage,	and	when	they	use	the	term	significant	effect	in	public
conversations,	they	typically	use	it	to	mean	important,	notable,	or	consequential,	rather	than	in	the
statistical	sense.

The	question	becomes,	then,	“When	can	you	use	terms	such	as	significant,	important,	notable,	or
consequential	(or	their	antonyms)	to	describe	effect	sizes?”	At	least	two	organizations	set	this	bar	at	d	=
.25	(Promising	Practices	Network	[PPN],	2014;	What	Works	Clearinghouse,	2014).	In	contrast,	after
comparing	the	results	of	psychoeducational	meta-analyses	with	results	from	the	field	of	medicine,	Lipsey
and	Wilson	(1993)	conclude,	“We	cannot	arbitrarily	dismiss	statistically	modest	values	(even	0.10	or	0.20
SDs)	as	obviously	trivial”	(p.	1199).

You	also	can	assess	how	much	any	relation	might	be	valued	by	consumers	of	your	synthesis.	This
assessment	involves	the	difficult	task	of	making	practical	judgments	about	significance.	So,	for	example,
an	effect	size	of	aerobic	exercise	on	improved	memory	in	adults	of	d	=	.128	may	be	small	when	compared
to	Cohen’s	benchmarks	and	other	contrasting	elements.	Still,	we	might	argue	that	this	improvement
translates	into	an	equivalent	measure	suggesting	that	a	practically	important	number	of	adults	will
remain	cognitively	robust	until	later	in	life	(see	Rosenthal,	1990,	for	a	similar	argument).	It	might	then	be
argued	that	the	cost	of	the	intervention	was	minimal	relative	to	its	change	in	life	satisfaction,	or	even	the
cost	of	health	care	saved	by	participants.	Levin	(2002)	has	laid	out	some	ground	rules	for	conducting	this
type	of	cost-effectiveness	analysis	for	educational	programs.

In	a	similar	vein	relating	to	the	impact	of	afterschool	programs,	Kane	(2004)	made	the	case	that	the
interpretation	of	an	effect	also	needs	to	be	influenced	by	what	a	reasonable	expectation	might	be	for	the
impact	of	the	intervention	or	manipulation.	His	assessment	of	valuations	of	afterschool	programs	led
Kane	to	use	a	threshold	even	lower	than	that	suggested	by	Lipsey	and	Wilson.	He	pointed	out	that	the
national	samples	used	to	norm	the	Stanford	9	achievement	test	suggested	that	test	scores	of	fifth	graders
in	the	spring	were	one-third	a	standard	deviation	higher	in	reading	and	one-half	a	standard	deviation
higher	in	math	than	they	were	in	the	spring	of	fourth	grade.	This	effect	is	the	result	of	“everything	that
happens	to	a	student	between	the	end	of	fourth	grade	and	the	end	of	fifth	grade”	(p.	3).	Given	this	effect,



Kane	argued	it	would	be	unreasonable	to	expect	an	effect	size	of	even	d	=	.20	(Cohen’s	definition	of	a
small	effect)	from	the	added	instruction	made	available	through	afterschool	programs.	He	went	on	to
argue	that	a	more	reasonable	expectation	for	interventions	such	as	afterschool	programs	could	be	set	by
calculating	(a)	the	fraction	of	time	during	a	school	year	that	students	spend	in	such	programs	or	(b)	the
gain	in	earnings	in	later	life	needed	to	offset	the	cost	of	the	program.	Kane	suggested	that	in	both	cases
the	more	reasonable	expectation	for	a	consequential	effect	of	afterschool	programs	would	be	between	d	=
.05	and	.07.

Thus,	it	appears	that	criteria	for	labeling	an	effect	size	as	practically	significant,	important,	or
consequential	also	vary,	and	a	case	can	be	made	that	developing	such	criteria	requires	a	contextualization
of	the	effect	little	different	from	that	involved	in	applying	labels	on	the	size	of	an	effect	relative	to	other
effects.

Using	Adjectives	to	Convey	Proven	and	Promising	Findings
Two	other	descriptors	of	research	results	that	relate	to	the	evaluations	of	social	programs	have	received
attention	among	some	social	scientists.	These	are	the	terms	proven	and	promising.	For	example,	the	PPN
(2014)	requires	that	for	a	program	or	practice	to	be	labeled	proven,	the	associated	evidence	must	meet
the	following	criteria:

The	program	must	directly	affect	one	of	the	important	outcome	measures.
At	least	one	outcome	is	changed	by	20%,	d	=	0.25,	or	more.
At	least	one	outcome	with	a	substantial	effect	size	is	statistically	significant	at	the	5%	level.
The	study	design	used	a	convincing	comparison	group	to	identify	program	impacts,	such	as	random
assignment	or	some	quasi-experimental	designs.
The	sample	size	exceeds	30	in	both	the	treatment	and	comparison	groups.
The	report	is	publicly	available.

These	criteria	appear	to	refer	to	as	few	as	one	study.

To	claim	that	anything	is	proven	through	research	is	always	problematic,	as	most	philosophers	of	science
accept	the	notion	that	a	rejection	of	the	null	hypothesis	at	any	statistical	level,	no	matter	how	improbable,
is	not	an	affirmation	of	any	specific	alternative	hypothesis	(Popper,	2002).	Of	course,	there	are	different
levels	of	uncertainty	about	alternative	hypotheses	depending	on	the	number	and	nature	of	other
explanations	that	fit	the	data.

The	PPN	goes	on	to	define	the	term	promising	as	follows:

The	program	may	affect	an	intermediary	outcome	associated	with	one	of	the	indicators	of	interest.
There	is	an	associated	change	in	outcome	of	more	than	1%.
Outcome	change	is	significant	at	the	10%	level.
The	study	has	a	comparison	group,	but	it	may	have	some	weaknesses;	for	example,	the	groups	lack
comparability	on	preexisting	variables	or	the	analysis	does	not	employ	appropriate	statistical
controls.
The	sample	size	exceeds	10	in	both	the	program	and	comparison	groups.
The	report	is	publicly	available.

The	Merriam-Webster	online	dictionary	(2015b)	defines	the	word	promising	as	“likely	to	succeed	or	be
good:	full	of	promise.”	Thus,	there	is	some	correspondence	between	the	PPN	definition	and	common
parlance,	if	we	assume	that	having	an	impact	on	mediating	variables	and	using	less-than-optimal	research
designs	can	provide	hope	that	the	practice	will	produce	positive	results	in	future	studies	that	test	the
intervention	more	directly	and	rigorously.	However,	the	PPN	definitions	of	both	proven	and	promising	also
include	reference	to	the	magnitude	of	the	program’s	effect.	So,	it	appears	that	a	program	would	be
labeled	promising,	even	if	it	measured	the	outcomes	of	most	interest	and	used	more-rigorous	designs	but
revealed	a	smaller	effect	size	than	PPN	requires	for	a	program	to	be	considered	“proven”	(i.e.,	at	least
one	outcome	is	changed	by	20%,	d	=	0.25,	or	more).	This	confounding	of	the	trustworthiness	of	the
evidence	and	the	magnitude	of	the	effect	may	be	a	divergence	from	the	everyday	understanding	of	what
both	proven	and	promising	mean.

Should	Researchers	Supply	Labels	at	All?
Cohen	(1988)	cautioned	that	magnitude	labels	applied	to	effect	sizes	would	involve	an	arbitrary	choice	of
contrasting	elements.	To	serve	your	audience	best,	then,	it	is	best	practice	to	present	multiple	contrasting
elements,	perhaps	picking	some	contrasting	elements	that	make	the	effect	of	interest	look	relatively	small
and	other	elements	that	make	it	look	relatively	large.	The	search	for	definitions	of	“significance”	has
revealed	that	effects	of	small	magnitude,	relatively	speaking,	may	not	be	inconsequential.	And,	effects
that	are	even	smaller	than	small	may	be	all	we	can	reasonably	expect	with	some	interventions.	Trying	to
provide	such	benchmarks	are	valiant	and	instructive	efforts	that,	at	the	least,	caution	you	not	to	apply
labels	for	effects	without	providing	your	audience	with	much	additional	context,	even	multiple	contexts.



Furthermore,	I	suggest	you	cast	a	critical	eye	on	efforts	to	define	terms	such	as	proven	and	promising	by
associating	them	with	different	clusters	of	research	characteristics	and	results,	whether	these	clusters
are	based	on	the	number	of	studies	and	participants,	the	research	designs	used,	the	statistical
significance	of	results,	the	size	of	effects,	and	so	on,	in	various	combinations.	Efforts	to	define	these
labels	seem	destined	to	always	come	up	short,	lead	to	a	lack	of	consensus	concerning	what	cluster	of
evidence	justifies	what	label,	and,	perhaps	of	most	concern,	provide	esoteric	definitions	of	commonly
used	words	that	simply	do	not	map	onto	the	ways	these	terms	are	understood	in	everyday	language.

Metrics	That	Are	Meaningful	to	General	Audiences
One	way	you	can	get	around	providing	qualitative	labels	is	to	try	to	express	the	quantitative	results	of
your	meta-analysis	in	metrics	that	have	meaning	for	your	audience.	If	this	can	be	accomplished,	the
audience	should	be	able	to	apply	their	own	qualitative	labels	to	the	quantitative	results	and	perhaps
debate	the	appropriateness	of	different	labels	they	have	applied.	Put	simply,	if	you	can	convey	a	clear
understanding	of	what	constitutes	an	ounce,	then	audiences	should	be	able	to	determine,	or	debate,
whether	an	eight-ounce	glass	containing	four	ounces	of	liquid	is	half	empty	or	half	full.	Next	I	describe	a
few	ways	to	translate	effect	size	metrics	into	specific	contexts	that	have	enough	intuitive	meaning	that
general	audiences	can	apply,	and	debate,	the	appropriateness	of	different	labels.

Raw	Scores	and	Familiar	Transformed	Scores
Many	metrics	are	familiar	enough	to	be	understood	implicitly	by	audiences	not	steeped	in	statistical
training.	These	include	some	metrics	in	their	raw	form,	such	as	a	person’s	blood	pressure.	So,	if	you	tell
your	audience	that	an	activity-promotion	intervention	for	older	adults	led	to	a	10-point	reduction	in
systolic	blood	pressure	and	a	5-point	reduction	in	diastolic	blood	pressure,	your	audience	might	be	able	to
interpret	this	finding	as	“important”	or	“trivial”	without	you	supplying	a	label,	though	you	might	still	want
to	present	the	effects	of	some	other	interventions	meant	to	accomplish	the	same	type	of	result	and,
perhaps,	a	relative	cost-benefit	analysis.	Other	scores	are	familiar	transformations	of	raw	scores.	These
would	include,	for	example,	IQ	and	SAT	scores.	You	can	report	the	change	in	these	familiar	transformed
scores	as	a	function	of	being	exposed	to	an	intervention	(e.g.,	intervention	X	led	to	a	50-point
improvement	in	SAT	scores)	and	be	fairly	confident	that	the	results	will	be	understood	by	a	general
audience.

One	shortcoming	of	presenting	effect	sizes	in	terms	of	raw	and	familiar	transformed	scores	is	that	the
scores	cannot	be	combined	across	different	types	of	measures.	For	example,	effects	expressed	as	changes
in	SAT	scores	cannot	be	directly	combined	with	changes	in	ACT	scores.	Thus,	the	results	associated	with
each	type	of	measure	must	be	reported	separately.	This	is	not	necessarily	a	bad	thing	if	you	consider	it
important	to	maintain	these	distinctions	among	outcomes,	even	if	all	measures	relate	to	the	same	broader
construct.	If	you	want	to	describe	an	intervention’s	general	effect	on	standardized	achievement	test
scores,	these	effects	will	have	to	be	standardized	before	you	do	so.

Translations	of	the	Standardized	Mean	Difference
The	three	effect	size	metrics	used	most	frequently	in	meta-analysis—the	d-index,	r-index,	and	odds	ratio—
are	examples	of	standardized	measures	of	effect.	However,	describing	them	to	general	audiences	without
additional	explanation	leaves	most	people	scratching	their	heads.

For	standardized	mean	differences,	I	have	developed	two	ways	to	express	the	d-index	for	general
audiences	that	are	helpful	in	interpreting	an	intervention’s	effect	on	achievement	(see	Cooper,	2007).
Both	are	based	on	a	metric	associated	with	the	d-index	that	Cohen	(1988)	called	U3.	U3	represents	the
percentage	of	the	units	in	the	group	with	the	lower	mean	that	is	exceeded	by	50%	of	the	scores	in	the
higher-meaned	group.	Table	7.1	presents	the	equivalent	values	for	the	d-index	and	U3.	Thus,	U3	answers
the	question,	“What	percentage	of	the	scores	in	the	lower-meaned	group	was	surpassed	by	the	average
score	in	the	higher-meaned	group?”	For	example,	consider	a	randomly	assigned	group	of	middle-school
students,	one-half	of	whom	received	study	skills	instruction	and	the	other	half	of	whom	received	no	study
skills	instruction.	The	principal	outcome	measure	is	an	end-of-unit	test	in	algebra.	If	the	study	found	a	d-
index	of	.30,	it	would	be	associated	with	a	U3	value	of	61.8%.	This	means	that	the	average	student
receiving	homework	(50th	percentile)	scored	higher	on	the	unit	test	than	61.8%	of	students	who	received
no	homework.
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But	there	is	no	need	to	stop	with	U3.	It	is	still	quite	abstract	and	not	necessarily	more	intuitive	than	the	d-
index	itself.	For	example,	staying	in	the	educational	context,	U3	can	also	be	used	to	express	the	change	in
achievement	associated	with	an	intervention	when	achievement	is	graded	on	a	curve.	Here,	you	must
begin	by	proposing	the	grade	curve.	In	this	case,	the	researcher	reveals	the	effect	by	showing	how	the
average	student’s	grade	would	change	if	only	that	student	received	the	intervention.	Figure	7.3	presents
one	such	grade	curve.	It	also	illustrates	the	effect	that	algebra	homework	would	have	on	the	unit	test
grade	received	by	the	average	student	(had	homework	not	occurred).	As	shown	in	Figure	7.3,	the	average
student	in	a	class	of	students	who	all	received	study	skills	instruction	would	receive	the	middle	C.	If	that
student	were	the	only	student	in	class	to	get	study	skills	instruction	(and	all	else	was	unchanged),	the
intervention	would	improve	the	student’s	grade	to	a	C+,	graded	on	the	proposed	curve.

Figure	7.3	“Grading”	a	Hypothetical	Study	Skills	Intervention	on	a	Curve



SOURCE:	From	“The	search	for	meaningful	ways	to	express	the	effects	of	interventions,”	by	H.
Cooper,	Child	Development	Perspectives,	2(3).	Copyright	2008	by	Blackwell	Publishing.	Reprinted
with	permission.

In	my	example,	it	is	critical	that	the	researchers	point	out	to	the	audience	that	they	have	supplied	the
grade	curve	and	that	other	curves	could	be	more	or	less	sensitive	to	changes	in	the	outcome	measure.
Therefore,	the	grade	curve	used	in	Figure	7.3	might	be	considered	very	tough	by	today’s	standards;	the
average	student	gets	a	C	and	only	9%	of	students	get	an	A	or	A–.	Had	a	more	lenient	curve	been	used,	the
middle	grade	could	be	higher	than	C	and	the	discrimination	of	scores	on	the	top	half	of	the	curve	would
be	diminished.	The	result	would	suggest	a	lesser	change	in	grade	as	a	function	of	study	skills	instruction.

Why	is	offering	an	arbitrary	grade	curve	better	than	providing	an	arbitrary	yardstick,	such	as	Cohen’s
adjectives,	for	the	magnitude	and	significance	of	effects?	First,	the	grade	curve	metric	is	perfectly
transparent.	All	its	assumptions	are	known	and	are	easily	displayed.	All	its	values	are	familiar	to	most
audiences.	Second,	because	it	is	familiar	audiences	can	evaluate	the	appropriateness	of	the	curve	and
adjust	the	effect	of	the	intervention	on	grades	for	themselves,	if	they	wish.	Finally,	the	audience	does	not
need	special	expertise—that	is,	knowledge	of	which	other	research	outcomes	might	have	been	used	as
yardsticks—to	translate	findings	to	other	curves	they	find	more	legitimate.

My	second	use	of	U3	gets	around	the	problem	of	choosing	one	grade	curve	among	the	many.	It	shows	how
a	student’s	class	rank	might	change	as	a	function	of	the	intervention.	For	example,	assume	that	an
intervention	provides	a	randomly	chosen	group	of	ninth	graders	with	a	course	in	general	study	skills,	and
the	outcome	measure	is	students’	cumulative	grade	point	average	upon	graduation.	Assume	as	well	that
the	effect	of	the	intervention	is	again	d	=	.3	and	U3	=	61.8%.	In	this	scenario,	the	student	who	would
have	placed	in	the	middle	of	the	final	class	ranking	(50%)	would	surpass	11%	more	students	if	he	or	she
were	the	only	student	to	receive	instruction	(11%	is	the	rounded	difference	between	the	50th	percentile
student	and	the	61.8th	percentile	student).	Figure	7.4	presents	this	result	visually	for	a	graduating	class
with	100	students.

Figure	7.4	Hypothetical	Change	in	a	Student’s	Class	Rank	Due	to	Study	Skills	Instruction



SOURCE:	From	“The	search	for	meaningful	ways	to	express	the	effects	of	interventions,”	by	H.
Cooper,	Child	Development	Perspectives,	2(3).	Copyright	2008	by	Blackwell	Publishing.	Reprinted
with	permission.

These	are	just	two	examples	of	how	standardized	effect	sizes	can	be	contextualized	to	convey	greater
intuitive	meaning	to	general	audiences.	The	grade	curve	translation	is	most	meaningful	when	applied	to
outcome	measures	that	are	natural	candidates	for	grading	on	a	curve,	such	as	class	exams.	However,	the
need	to	provide	a	grading	curve	is	a	drawback	to	its	use.	The	class	rank	translation	is	most	meaningful	in
the	context	of	high	school	interventions	that	are	meant	to	have	general	effects	on	achievement,	as
measured	by	cumulative	grade	point	averages,	and	class	rank	has	meaning	because	of	its	use	in	college
admissions.	One	of	your	creative	challenges	is	to	think	of	appropriate	metrics	for	the	results	of	your
research	synthesis	and	how	these	can	be	conveyed	to	your	audience	in	a	meaningful	way.

Translations	of	Binomial	Effect	Size	Display
Rosenthal	and	Rubin	(1982)	provide	a	translation	of	the	effects	of	discrete	interventions	on	dichotomous
outcomes,	called	the	binomial	effect	size	display	(BESD).	They	suggest	it	could	be	used	for	other	effect
size	metrics	as	well.	The	BESD	transforms	a	d-index	and	r-index	into	a	2	×	2	table	with	the	marginals
assumed	to	be	equal	for	both	rows	and	columns.	In	their	examples,	Rosenthal	and	Rubin	assume	100
participants,	with	50	in	each	of	the	two	conditions	and	50	outcomes	indicating	intervention	success	and
50	indicating	failure.	They	show	that	Cohen’s	relatively	small	effect	of	d	=	.20	(equivalent	to	r	=	.1,
explaining	1%	of	the	variance)	is	associated	with	an	increase	in	success	rates	from	45%	to	55%.	For
example,	an	intervention	meant	to	increase	students’	reading	scores	above	a	proficiency	threshold	with
this	effect	size	would	mean	that	10	more	children	in	every	100	would	meet	the	minimum	requirement.
This	should	be	a	metric	that	most	general	audiences	will	understand.

The	BESD	is	not	without	its	critics	(little	is	in	this	area),	especially	because	of	its	assumptions	regarding
marginal	values	(Randolph	&	Shawn,	2005).	Even	so,	it	seems	that	the	BESD	is	an	intuitively	appealing
expression	of	effect	when	the	intervention	outcome	is	dichotomous,	and	even	more	so	when	the	observed
marginals	can	be	retrieved.	Indeed,	when	this	information	is	available,	the	BESD	reduces	to	a	display	of
raw	score	results.	Its	application	is	more	difficult	when	it	requires	the	audience	to	mentally	convert
continuous	outcome	measures	into	dichotomous	ones.

Translations	of	Effects	Involving	Two	Continuous	Measures
Providing	translations	for	associations	between	two	continuous	variables—r-indexes	and	ß-weights—
requires	knowledge	of	the	raw	scales	and	the	standard	deviations	of	the	predictor	and	outcome.	With	this
information,	you	can	describe	the	change	in	outcome	associated	with	a	specified	additional	amount	of
exposure	to	the	intervention.	For	example,	assume	a	predictor	variable	is	the	number	of	minutes	a	child
with	a	behavior	problem	spends	in	counseling	each	week,	and	the	standard	deviation	for	this	variable	is
30	minutes.	The	outcome	variable	is	the	number	of	absences	from	school,	and	its	standard	deviation	is	4.
Both	are	measured	across	a	full	school	year.	In	such	case,	a	ß-weight	or	r-index	of	–.50	would	mean	that,



on	average,	students	in	the	sample	who	spent	30	more	minutes	in	counseling	each	week	also	had	two
fewer	absences	that	year.

Conclusion
To	conclude,	then,	along	with	analyses	that	examine	the	impact	of	missing	data	and	varying	assumptions
for	the	statistical	analyses,	the	next	question	you	should	ask	when	evaluating	the	interpretation	of	effect
sizes	in	meta-analysis	is,

Did	the	synthesists	(a)	contrast	the	magnitude	of	effects	with	other	related	effect	sizes	and/or	(b)
present	a	practical	interpretation	of	the	significance	of	the	effects?

A	complete	and	careful	assessment	of	the	generality	of	the	synthesis’	findings	and	the	confidence	with
which	you	can	draw	causal	inferences	from	it	are	also	critical	parts	of	how	you	will	interpret	the	findings
of	a	research	synthesis.

Exercises
Find	two	primary	research	reports	on	the	same	topic	that	vary	in	method.	Then

1.	 Calculate	the	effect	sizes	reported	in	each.
2.	 Compare	the	effect	sizes	to	one	another,	taking	into	account	the	influences	of	their	different	methods.

3.	 Decide	whether	you	consider	the	magnitude	of	the	effect	sizes	to	be
1.	 Large,	medium,	or	small;	and
2.	 Important	or	not	important.

4.	 Justify	your	decision.

Notes
1.	Portions	of	this	discussion	include	minor	modifications	of	a	similar	discussion	I	provided	in	Cooper
(2009).



8	Step	7	Presenting	the	Results

What	information	should	be	included	in	the	report	of	the	synthesis?

Primary	Function	in	Research	Synthesis
To	identify	the	aspects	of	methods	and	results	readers	of	the	report	will	need	to	know	to	evaluate	the	synthesis

Procedural	Variation	That	Might	Produce	Differences	in	Conclusions
Variation	in	reporting	might	(a)	lead	readers	to	place	more	or	less	trust	in	synthesis	outcomes	and	(b)	influence	others’
ability	to	replicate	results.

Question	to	Ask	When	Presenting	the	Research	Synthesis	Methods	and
Results
Were	the	procedures	and	results	of	the	research	synthesis	documented	clearly	and	completely?

This	chapter	describes
A	format	for	research	syntheses	reports
How	to	present	tabulated	data	in	syntheses

The	transformation	of	your	notes,	printouts,	and	coding	forms	into	a	cohesive	public	document	describing
your	research	synthesis	is	a	task	with	profound	implications	for	the	accumulation	of	knowledge.	All	your
efforts	to	conduct	a	trustworthy	and	convincing	integration	of	the	research	literature	will	be	for	naught
unless	you	pay	careful	attention	to	how	your	synthesis	is	described	in	the	report.

Report	Writing	in	Social	Science
The	codified	guidelines	used	by	many	social	science	disciplines	for	reporting	primary	research	are
contained	in	APA’s	Publication	Manual	(APA,	2010).	The	Publication	Manual	is	quite	specific	about	the
style	and	format	of	reports,	and	it	even	gives	some	guidance	concerning	grammar	and	the	clear
expression	of	ideas.	It	tells	researchers	how	to	set	up	a	manuscript	page,	what	the	major	section	headings
should	be,	and	what	conventions	to	use	when	reporting	the	results	of	statistical	analyses,	among	many
other	details	of	report	preparation.	Naturally,	however,	it	is	much	less	explicit	in	guiding	judgments	about
what	makes	a	finding	important	to	readers.	It	would	be	impossible	to	explicate	a	general	set	of	rules	for
defining	the	scientific	importance	of	results.	Hopefully,	the	previous	chapter	has	provided	you	with	some
guidance	on	how	to	interpret	the	findings	of	your	research	synthesis.

Because	the	integration	of	research	results	has	grown	in	importance,	several	attempts	have	been	made	to
develop	standards	for	the	reporting	of	research	syntheses,	especially	those	that	contain	meta-analyses.
Several	proposals	regarding	what	information	should	be	included	in	the	report	of	a	meta-analysis	come
from	researchers	and	statisticians	in	the	medical	sciences.	The	Equator	Network	(2015)	keeps	track	of
developments	in	research	synthesis	reporting	standards	as	well	as	other	types	of	research.	In	the	social
sciences,	a	task	force	of	the	APA	proposed	a	set	of	reporting	standards	for	meta-analysis,	called	MARS
(Meta-Analysis	Reporting	Standards;	APA	Publications	and	Communications	Board	Working	Group	on
Journal	Article	Reporting	Standards,	2008).1	The	MARS	was	incorporated	into	the	APA	Publication
Manual	(APA,	2010).	The	MARS	was	constructed	by,	first,	comparing	the	content	of	many	of	the
aforementioned	standards	and	developing	a	list	of	elements	contained	in	any	of	these.	Second,	the	items
on	this	list	were	rewritten	to	make	the	terms	used	in	them	more	familiar	to	social	science	audiences.
Third,	the	members	of	the	working	group	added	some	items	of	their	own.	Then,	this	set	of	items	was
shared	with	members	of	the	Society	for	Research	Synthesis	Methodology,	who	were	asked	to	make
suggestions	about	the	inclusion	of	other	items	or	the	removal	of	items	that	seemed	unnecessary.	Finally,
the	Publications	and	Communications	Board	of	the	APA	reacted	to	the	items.	After	receiving	these
reactions,	the	working	group	arrived	at	the	list	of	recommendations	contained	in	Table	8.1.	The
emergence	of	these	reporting	guidelines	is	critical	to	progress	in	the	social	sciences	because	they	will
promote	the	complete	and	transparent	reporting	of	methods	and	results	for	meta-analyses.	Next,	I	will
provide	a	bit	more	context	and	detail	regarding	the	items	in	the	MARS.

Meta-Analysis	Reporting	Standards
As	Table	8.1	reveals,	the	format	for	reporting	meta-analyses	has	evolved	to	look	a	lot	like	that	of	reports



of	primary	research,	with	an	introduction,	method	section,	results	section,	and	discussion.	If	a	research
synthesis	does	not	include	a	meta-analysis,	there	is	still	much	sound	advice	for	preparing	a	report	in
Table	8.1,	though	many	of	the	items	listed	under	the	“Method”	and	“Results”	sections	would	be
irrelevant.	In	the	following,	I	will	assume	that	your	report	is	describing	the	results	of	a	research	synthesis
that	employed	meta-analytic	techniques.

Title
It	is	important	that	the	title	of	your	report	include	the	term	meta-analysis	if	one	was	conducted,	or
research	synthesis,	research	review,	or	a	related	term,	if	a	meta-analysis	was	not	performed.	These	terms
are	very	informative	about	what	is	contained	in	your	report.	Also,	people	who	are	searching	the	literature
for	documents	on	your	topic	using	a	computerized	reference	database	or	online	search	may	use	one	of
these	terms	if	they	are	interested	in	finding	only	those	documents	that	contain	summaries	of	the
literature.	If	your	title	does	not	contain	one	of	these	terms	and	a	search	is	conducted	on	titles	only,	your
report	will	not	be	included	in	the	search	results.	So,	for	example,	our	title	“A	Meta-Analysis	on	the	Effect
of	Choice	on	Intrinsic	Motivation	and	Related	Outcomes”	includes	the	three	terms	most	likely	to	be	used
in	a	search	by	someone	interested	in	finding	documents	like	ours.







SOURCE:	APA	Publications	and	Communications	Board	Working	Group	on	Journal	Article	Reporting	Standards	(2008).

Abstract
The	abstract	for	a	research	synthesis	follows	the	same	rules	as	abstracts	for	primary	research.	Because
an	abstract	is	short,	you	can	spend	only	a	sentence	or	two	on	stating	the	problem,	the	kinds	of	studies
that	were	included	in	the	meta-analysis,	your	method	and	results,	and	major	conclusions.	As	with	the	title,
it	is	important	to	think	about	people	doing	literature	searches	when	writing	your	abstract.	Remember	to
include	the	terms	you	think	searchers	who	are	interested	in	your	topic	are	likely	to	pick	when	they
construct	their	computer	searches.	Also,	remember	that	many	people	will	read	only	your	abstract,	so	you
must	tell	them	the	most	important	things	about	your	meta-analysis.

The	Introduction	Section
The	introduction	to	a	research	synthesis	sets	the	stage	for	the	empirical	results	that	follow.	It	should
contain	a	conceptual	presentation	of	the	research	problem	and	a	statement	of	the	problem’s	significance.
Introductions	are	typically	short	in	primary	research	reports.	In	research	syntheses,	introductions	should
be	considerably	more	detailed.	You	should	attempt	to	present	a	complete	overview	of	the	research
question,	including	its	theoretical,	practical,	and	methodological	history.	Where	do	the	concepts	involved
in	the	research	come	from?	Are	they	grounded	in	theory	(as	is,	for	example,	the	notion	of	intrinsic
motivation)	or	in	practical	circumstances	(as	is	the	notion	of	homework)?	Are	there	theoretical	debates
surrounding	the	meaning	or	utility	of	the	concepts?	How	do	theories	predict	that	the	concepts	will	be
related	to	one	another?	Are	there	conflicting	predictions	associated	with	different	theories?	What
variables	do	different	theories,	scholars,	or	practitioners	suggest	might	influence	the	strength	of	the
relation?

The	introduction	to	a	research	synthesis	must	contextualize	the	problem	under	consideration.	Especially
when	the	synthesist	intends	to	report	a	meta-analysis,	it	is	crucial	that	ample	attention	be	paid	to	the



qualitative	and	historical	debates	surrounding	the	research	question.	Otherwise,	you	will	be	open	to	the
criticism	that	numbers	have	been	crunched	together	without	ample	appreciation	for	the	conceptual	and
contextual	underpinnings	that	give	empirical	data	their	meaning.

Once	the	context	of	the	problem	has	been	laid	out,	the	introduction	then	should	describe	how	the
important	issues	you	have	identified	have	guided	your	decisions	about	how	the	meta-analysis	was
conducted.	How	did	you	translate	the	theoretical,	practical,	and	historical	issues	and	debates	into	your
choices	about	what	moderator	variables	to	explore?	Were	there	issues	of	concern	regarding	how	studies
were	designed	and	implemented,	and	were	these	represented	in	your	meta-analysis?

The	introduction	to	a	research	synthesis	is	also	where	you	should	discuss	previous	efforts	to	integrate	the
research	on	the	topic.	This	description	of	past	syntheses	should	highlight	what	has	been	learned	from
these	efforts	as	well	as	point	out	their	inconsistencies	and	methodological	strengths	and	weaknesses.	The
contribution	of	your	new	effort	should	be	emphasized	by	a	clear	statement	of	the	unresolved	empirical
questions	and	controversies	addressed	by	your	new	work.

In	sum,	the	introduction	to	a	research	synthesis	should	present	a	complete	overview	of	the	theoretical,
conceptual,	and/or	practical	issues	surrounding	the	research	problem.	It	should	present	the	controversies
in	the	topic	area	still	to	be	resolved,	and	indicate	which	of	these	were	the	focus	of	the	new	synthesis
effort.	It	should	present	a	description	of	prior	syntheses,	what	their	contribution	and	shortcomings	were,
and	why	your	synthesis	is	innovative	and	important.

The	Method	Section
The	purpose	of	a	method	section	is	to	describe	operationally	how	the	research	was	conducted.	The
method	section	of	a	research	synthesis	will	be	considerably	different	from	that	of	a	primary	research
report.	The	MARS	suggests	that	a	meta-analysis	method	section	will	need	to	address	five	separate	sets	of
questions—(a)	inclusion	and	exclusion	criteria,	(b)	moderator	and	mediator	analyses,	(c)	search
strategies,	(d)	coding	procedures,	and	(e)	statistical	methods.	The	order	in	which	they	are	presented	can
vary,	but	you	should	consider	using	these	topics	as	subheadings	in	the	report.

Inclusion	and	exclusion	criteria.
The	method	section	should	address	the	criteria	for	relevance	that	were	applied	to	the	studies	uncovered
by	the	literature	search.	What	characteristics	of	studies	were	used	to	determine	whether	a	particular
effort	was	relevant	to	the	topic	of	interest?	For	example,	in	the	synthesis	of	research	on	the	effects	of
choice	on	intrinsic	motivation,	three	criteria	had	to	be	met	by	every	study	included	in	the	synthesis:	(a)
the	study	had	to	include	an	experimental	manipulation	of	choice	(not	a	naturalistic	measure	of	choice);	(b)
the	study	had	to	use	a	measure	of	intrinsic	motivation	or	a	related	outcome,	such	as	effort,	task
performance,	subsequent	learning,	or	perceived	competence;	and	(c)	the	study	had	to	present	enough
information	to	allow	us	to	compute	an	effect	size.

Next,	you	need	to	describe	what	characteristics	of	studies	would	have	led	to	their	exclusion	from	the
synthesis,	even	if	they	otherwise	met	the	inclusion	criteria.	You	should	also	state	how	many	studies	were
excluded	for	any	given	reason.	For	example,	the	meta-analysis	of	the	effect	of	choice	on	intrinsic
motivation	excluded	studies	that	met	the	three	inclusion	criteria	but	were	conducted	on	populations	with
a	special	characteristic	or	in	a	country	other	than	the	United	States	or	Canada.	This	led	to	the	exclusion
of	two	studies	conducted	on	children	with	learning	disabilities	or	behavior	disorders	and	eight	studies
conducted	outside	North	America.

When	readers	examine	the	relevance	criteria	employed	in	a	synthesis,	they	will	be	critically	evaluating
your	notions	about	how	concepts	and	operations	fit	together.	Considerable	debate	about	the	outcomes	of
a	particular	synthesis	may	focus	on	these	decisions.	Some	readers	may	find	that	your	relevance	criteria
were	too	broad—operational	definitions	of	concepts	were	included	that	they	believe	were	irrelevant.	Of
course,	you	can	anticipate	these	concerns	and	rather	than	exclude	studies	based	on	them	use	the
debatable	criteria	as	distinctions	between	studies	and	then	analyze	them	as	potential	moderators	of	study
results.	Other	readers	may	find	that	your	operational	definitions	were	too	narrow.	For	example,	some
readers	might	think	that	we	should	have	included	samples	from	countries	outside	North	America	in	our
synthesis	on	choice	and	intrinsic	motivation.	However,	we	justified	our	decision	by	pointing	out	that	very
few	studies	were	found	that	used	non–North	American	samples	and	only	a	few	countries	were
represented	among	these	few	studies.	Therefore,	we	believed	that	including	these	studies	still	would	not
have	warranted	generalizing	our	conclusions	to	people	other	than	those	living	in	North	America.
Moderator	analyses	could	have	been	used	to	determine	whether	the	effect	of	choice	varied	depending	on
the	country	sampled,	but	we	believed	there	were	too	few	studies	to	reliably	conduct	such	an	analysis.
Still,	these	exclusion	criteria	might	lead	readers	to	examine	excluded	studies	to	determine	if	including
their	findings	would	affect	the	synthesis	outcome.

In	addition	to	this	general	description	of	the	included	and	excluded	evidence,	this	subsection	is	a	good
place	to	describe	the	typical	methodologies	found	in	primary	research.	The	presentation	of	prototype



studies	is	a	good	way	to	present	methods	that	are	used	in	many	studies.	You	can	choose	several	studies
that	exemplify	the	methods	used	in	many	other	studies	and	present	the	specific	details	of	these
investigations.	In	instances	where	only	a	few	studies	are	found	to	be	relevant,	this	exercise	may	not	be
necessary—the	description	of	the	methods	used	in	each	study	can	be	combined	with	the	description	of	the
study’s	results.	In	our	meta-analysis	of	homework,	we	took	this	approach	to	describing	the	methods	and
results	of	the	few	studies	that	used	experimental	manipulations	of	homework.

Moderator	and	mediator	analyses.
Similar	to	the	inclusion	and	exclusion	criteria,	the	descriptions	you	give	of	the	variables	you	tested	as
moderators	or	mediators	of	study	results	let	readers	know	how	you	defined	these	variables	and,
especially,	how	you	chose	to	distinguish	among	studies	based	on	the	studies’	different	status	on	these
variables.	So,	for	example,	the	meta-analysis	on	choice	and	intrinsic	motivation	identified	“the	number	of
options	per	choice”	as	a	potential	variable	that	might	mediate	the	effect	of	choice.	Our	method	section
defined	this	variable	and	told	readers	that	we	grouped	the	studies	into	those	that	provided	(a)	two	options
per	choice,	(b)	three	to	five	options,	or	(c)	more	than	five	options.

Searching	strategies.
Information	on	the	procedures,	sources,	keywords,	and	years	covered	by	the	literature	search	allows	the
reader	to	assess	the	thoroughness	of	your	search	and	therefore	how	much	credibility	to	place	in	the
conclusions	of	the	synthesis.	In	terms	of	attempted	replication,	it	is	the	description	of	the	literature
search	that	first	would	be	examined	when	other	scholars	attempt	to	understand	why	different	syntheses
on	the	same	topic	have	come	to	similar	or	conflicting	conclusions.	It	is	also	good	to	include	a	rationale	for
the	choice	of	sources,	especially	with	regard	to	how	different	sources	were	used	to	complement	one
another	in	order	to	reduce	bias	in	the	sample	of	studies.	The	MARS	lists	16	different	aspects	of	a
literature	search	for	you	to	address	in	the	methods	section.	Atkinson,	Koenka,	Sanchez,	Moshontz,	and
Cooper	(2015)	expanded	this	list	to	cover	more	specific	details	about	who	did	the	coding,	results	of	the
application	of	inclusion	and	exclusion	criteria,	and	aspects	of	the	initial	screening	for	relevance.	Their
summary	is	presented	in	Table	8.2.

The	results	of	a	search	often	can	be	neatly	summarized	in	a	table.	For	example,	Brunton	and	Thomas
(2012)	used	a	diagram	suggested	by	PRISMA	(2015,	which	was	developed	for	syntheses	in	health	but	is
more	generally	relevant)	to	present	the	results	of	a	search	looking	for	studies	on	the	effectiveness	of
personal	development	planning	(reflecting,	recording,	planning	and	actions)	to	improve	learning.	A	copy
of	their	table	is	presented	in	Figure	8.1.

Brunton	and	Thomas	note	that	many	times	more	documents	will	be	examined	than	will	be	included	in	the
synthesis.	This	is	typical.	Also,	the	boxes	in	the	table	are	not	standard,	though	most	are	nearly	universally
used.	You	can	change	these	to	help	your	reader	understand	what	you	did	in	your	particular	circumstance.

Coding	procedures.
A	third	subsection	of	methods	should	describe	the	characteristics	of	the	people	who	retrieved	information
from	the	studies,	the	procedures	used	to	train	them,	and	how	the	reliability	of	the	retrieved	information
was	assessed,	as	well	as	what	this	assessment	revealed.	Often,	these	will	be	the	same	people	who
searched	the	literature	and	made	relevance	decisions.	If	so,	this	should	be	mentioned.

It	is	also	important	to	discuss	in	the	coding	procedures	section	how	missing	data	were	handled.	For
example,	in	our	meta-analysis	of	choice	and	intrinsic	motivation,	we	used	our	ability	to	calculate	an	effect
size	as	an	inclusion	criterion.	So	studies	were	examined	to	determine	whether	an	effect	size	could	be
calculated	from	them	before	the	process	of	coding	other	information	began.	If	no	effect	size	was
retrievable,	no	further	coding	occurred.	In	other	meta-analyses,	estimation	procedures	might	be	used	to
fill	in	these	blanks.	The	same	is	true	for	other	missing	study	characteristics.	For	example,	if	a	study	lacks
information	on	whether	random	assignment	was	used,	the	study	might	be	represented	as	giving	no	such
information.	Other	times,	you	might	develop	a	convention	that	says	if	the	use	of	random	assignment	was
not	mentioned,	it	was	assumed	the	study	did	not	use	random	assignment.	These	kinds	of	rules	should	be
described	in	this	section	of	your	report.

The	coding	section	also	can	be	where	you	described	how	you	made	judgments	about	study	quality.	The
decision	about	where	to	put	information	on	study	quality	really	can	fit	in	several	sections,	so	it	is	best
placed	where	it	provides	for	the	clearest	exposition.	If	studies	were	excluded	based	on	features	of	their
design	or	implementation,	this	would	be	reported	with	other	inclusion	and	exclusion	criteria.





SOURCE:	Atkinson,	K.	M.,	Koenka,	A.	C.,	Sanchez,	C.	E.,	Moshontz,	H.,	&	Cooper,	H.	(2015).	Reporting	Standards	for
literature	searches	and	report	inclusion	criteria:	Making	research	syntheses	more	transparent	and	easy	to	replicate.
Research	Synthesis	Methodology,	6,	87–95.	Reprinted	with	permission.

Figure	8.1	A	PRISMA	Flowchart	Describing	the	Outcomes	of	a	Literature	Search



SOURCE:	Brunton,	J.	&	Thomas,	J.	(2012).	Information	management	in	reviews.	In	D.	Gough,	S.	Oliver
&	J.	Thomas	(Eds.).	An	introduction	to	systematic	reviews.	Thousand	Oaks,	CA:	Sage.

Statistical	methods.
The	final	topics	described	in	the	method	section	of	a	research	synthesis	are	the	procedures	and
conventions	used	to	carry	out	any	quantitative	analysis	of	results.	Why	was	a	particular	effect	size	metric
chosen	and	how	was	it	calculated?	What	analyses	techniques	were	used	to	combine	results	of	separate
tests	of	a	hypothesis	and	to	examine	the	variability	in	findings	across	tests?	This	section	should	contain	a
rationale	for	each	procedural	choice	and	convention	you	use	and	should	describe	what	the	expected
impact	of	each	choice	might	be	on	the	outcomes	of	the	research	synthesis.

Another	important	topic	to	cover	in	this	subsection	concerns	how	you	identified	independent	findings	(see
Chapter	4).	You	should	carefully	spell	out	the	criteria	used	to	determine	how	to	treat	multiple	hypothesis
tests	from	the	same	laboratory,	report,	or	study.

The	Results	Section
The	results	section	should	present	a	summary	description	of	the	literature	and	the	findings	of	the	meta-
analysis.	It	should	also	present	any	results	of	the	synthesis	used	to	test	the	implications	of	different
assumptions	about	the	data,	such	as	different	models	of	error	and	different	patterns	of	missing	data.
While	the	results	sections	of	syntheses	will	vary	considerably	depending	on	the	nature	of	the	research
topic	and	evidence,	the	MARS	provides	a	good	general	strategy	for	presenting	results.	Next,	I	suggest
some	possible	subsections	for	organizing	the	presentation	of	results,	along	with	some	suggestions
regarding	how	to	visually	display	your	findings	in	tables	and	figures.	Additional	suggestions	regarding	the
presentation	of	data	in	meta-analysis	can	be	found	in	Borman	and	Grigg	(2009).

Results	of	the	literature	search.
Often,	synthesists	will	present	a	table	that	lists	all	the	studies	included	in	the	meta-analysis.	This	table
will	also	describe	a	few	critical	characteristics	of	each	study.	For	example,	Table	8.3	reproduces	the	table
we	used	in	the	synthesis	of	homework	research	to	describe	the	six	studies	that	tested	the	effects	of
homework	using	an	experimental	manipulation.	We	decided	that	the	most	important	information	to
include	in	the	table,	along	with	the	name	of	the	first	author	and	year	of	report	appearance,	was	the



research	design,	the	number	of	classes	and	students	included	in	the	study,	the	students’	grade	level,	the
subject	matter	of	the	homework	assignment,	the	achievement	outcome	measure,	and	the	effect	size.
Nearly	all	tables	of	this	sort	include	information	on	author	and	year,	sample	size,	and	effect	size,	so	this	is
a	pretty	simple	example.	Sometimes	the	information	you	want	to	present	in	this	table	will	be	extensive.	If
so,	you	may	want	to	use	abbreviations.	Table	8.4	presents	such	a	table	reproduced	from	our	meta-analysis
on	choice	and	intrinsic	motivation.	In	this	case,	we	resorted	to	an	extensive	footnote	to	describe	the
abbreviations.

ESS	stands	for	effective	sample	size	based	on	an	assumed	intraclass	correlation	of	.35.
SOURCE:	Cooper,	H.,	Robinson,	J.	C.,	&	Patall,	E.	A.	(2006).	Does	homework	improve	academic	achievement?	A	synthesis	of
research,	1987−2003.	Review	of	Educational	Research,	76,	1–62.	Copyright	2006	by	the	American	Educational	Research
Association.	Reprinted	with	permission.



SOURCE:	Patall,	Cooper,	&	Robinson	(2008,	281–286).	Copyright	2008	by	the	American	Psychological	Association.	Adapted
with	permission.
NOTE:	D	=	Dissertation,	J	=	Journal	article,	MT	=	Master’s	thesis,	R	=	Report,	A	=	Adults,	C	=	Children,	MC	=	Multiple
choices	from	a	list	of	options,	SC	=	Successive	choices,	IND	=	Indeterminate	number	of	options,	ACT	=	Choice	of	activities,	V
=	Choice	of	versions,	IR	=	Instructionally	relevant	choice,	IIR	=	Instructionally	irrelevant	choice,	CRW	=	Choice	of	rewards,
MX	=	Mixed,	SOC	=	Significant	other	control,	NSOC	=	Nonsignificant	other	control,	RAC	=	Random	assignment	control,	DC
=	Denied	choice,	SGC	=	Suggested	choice	control,	SMC	=	Some	choice	control,	AW	=	Aware	of	alternatives,	UAW	=
Unaware	of	alternatives,	Y	=	Yoked,	M	=	Matched,	NYM	=	No	yoking	or	matching,	TUL	=	Traditional	university	laboratory,
LNS	=	Laboratory	within	a	natural	setting,	NS	=	Natural	setting,	NRW	=	No	reward,	RW	=	Reward,	FCTS	=	Free	choice
time	spent,	FCE	=	Free	choice	to	engage	in	activity,	I	=	Interest,	E/L	=	Enjoyment/liking,	WTE	=	Willingness	to	engage	in
task	again,	I/E/L	=	Interest/Enjoyment/Liking,	GIM	=	General	intrinsic	motivation	measure,	CIM	=	Combined	intrinsic
motivation	measure,	TP	=	Task	performance,	EF	=	Effort,	SL	=	Subsequent	learning,	CR	=	Creativity,	PFC	=	Preference	for
challenge,	PC	=	Perceived	choice,	P/T	=	Pressure/tension,	SF	=	Satisfaction,	B	=	Behavioral,	S	=	Self-report,	NA	=	Not
applicable,	NR	=	Not	reported,	VRD	=	Varied,	CLPSD	=	Collapsed	condition.
For	studies	in	which	there	were	a	number	of	subgroups,	both	subgroup	effect	sizes	and	overall	effect	sizes	collapsed	across
subgroups	are	presented.	The	overall	effect	sizes	collapsed	across	subgroups	appear	in	the	top	of	a	row	for	every	study	with
multiple	subgroups.	Note	that	overall	effect	sizes	are	not	equal	to	taking	an	average	of	the	subgroup	effects.	This	is	because
overall	effect	sizes	were	computed	using	means,	standard	deviations,	t-	or	F-tests	provided	in	original	paper	rather	than
computed	by	averaging	across	the	effect	sizes	of	subgroups.

As	Atkinson	et	al.	and	(2014)	suggest,	you	may	also	want	to	provide	a	table	that	describes	the	studies	that
were	potentially	relevant	but	were	excluded.	The	MARS	suggests	these	studies	include	those	that	were
relevant	on	many	but	not	all	criteria	used	to	define	a	study	as	relevant.	This	table	might	look	like	Table



8.3	or	8.4;	it	is	usually	not	as	extensive	and	contains	columns	that	identify	the	relevance	criteria	or	at
least	a	column	that	explains	the	criteria	that	led	to	the	study’s	exclusion.

Table	8.4	contains	only	a	small	portion	of	the	studies	that	appeared	in	the	actual	table.	Because	tables
that	describe	the	studies	that	went	into	a	meta-analysis	can	be	quite	long,	journals	are	now	providing
auxiliary	websites	on	which	this	and	other	material	can	be	placed,	rather	than	including	it	in	the	printed
version	of	the	manuscript.	In	electronic	versions	of	articles,	the	tables	may	reside	on	separate	web	pages
but	be	linked	to	the	article	at	the	point	in	the	report	that	they	would	otherwise	appear.	When	you	submit
your	report	for	publication,	you	should	be	sure	to	include	these	tables	(in	the	report	or	in	a	separate
document);	when	your	paper	is	accepted,	you	and	the	editor	will	decide	what	the	best	strategy	is	to
present	your	results.

Assessment	of	study	quality.
If	you	conducted	an	assessment	of	the	quality	of	each	study,	this	can	be	included	in	the	described	tables.
Or,	if	the	judgments	were	complex,	you	might	consider	presenting	them	in	a	table	of	their	own.	For
example,	the	information	in	Table	5.3	could	be	presented	in	a	table	in	which	the	quality	dimensions	are
presented	in	columns	and	quality	ratings	(the	“yes”	and	“no”	in	Table	5.3)	are	given	in	separate	rows
devoted	to	each	study.

Aggregate	description	of	the	literature.
Certain	aggregate	descriptive	statistics	about	the	literature	should	be	reported	as	well.	Table	8.5	presents
the	section	of	our	homework	meta-analysis	that	presented	the	aggregate	results	for	studies	that
correlated	a	measure	of	the	amount	of	homework	a	student	did	and	the	student’s	achievement.	This
subsection	includes	the	following	elements:

The	number	of	studies,	effect	sizes,	and	samples	that	went	into	the	meta-analysis
A	description	of	studies	that	caused	any	differences	in	these	numbers—that	is,	studies	with	more
than	one	sample	and/or	outcome	measure
The	range	of	years	in	which	reports	appeared2
The	total	number	of	participants	across	all	studies	and	the	range,	median,	mean,	and	variance	of
sample	sizes	within	studies
A	test	for	statistical	outliers	among	the	sample	sizes
The	variables	that	could	not	be	tested	as	moderators	because	either	(a)	too	many	studies	were
missing	this	information	or	(b)	there	was	insufficient	variation	across	studies
The	number	of	positive	and	negative	effect	sizes
The	range	of	and	median	effect	size
The	unweighted	and	weighted	mean	effect	size	and	the	confidence	interval	for	the	weighted	mean
A	test	for	statistical	outliers	among	the	effect	sizes
The	results	of	a	test	for	missing	data	and	how	adjusting	for	missing	data	affected	the	cumulative
results

You	may	also	consider	putting	some	of	this	information	in	a	table,	if	you	believe	some	of	the	nuances	in
the	data	and	the	rationales	need	no	additional	explanation	that	might	be	lost	in	a	tabular	presentation,	for
example	they	are	included	in	the	methods	text.	Table	8.6	presents	the	results	of	a	meta-analysis	that
asked	the	question	“What	is	the	correlation	between	college	student	self-grades	and	instructor	grades
when	they	mark	the	same	test?”

Graphic	presentation	of	results.
A	good	way	to	present	the	results	of	your	meta-analysis	is	to	use	what	is	called	a	Forrest	Plot.	Figure	8.2
presents	a	Forrest	Plot	of	the	results	of	the	hypothetical	meta-analysis	I	used	in	Chapter	6	to	illustrate	the
mechanics	of	the	calculations	(Table	6.4).	This	figure	was	generated	by	the	Comprehensive	Meta-Analysis
software	package	(2015;	Borenstein,	Hedges,	Higgins,	&	Rothstein,	2005).	The	first	three	columns	of	the
figure	present	the	study	number,	whether	it	was	a	member	of	Moderator	Group	A	or	B,	and	its	total
sample	size.3	The	next	three	columns	give	each	study’s	correlation	and	the	lower	and	upper	limits	of	its
95%	confidence	interval.	The	Comprehensive	Meta-Analysis	program	would	let	me	report	other	statistics
here	as	well.	The	Forrest	Plot	part	of	the	figure	is	on	the	right.	This	graph	presents	each	correlation	in
what	is	called	a	box-and-whiskers	display.	The	box	is	centered	on	the	value	of	the	study’s	correlation.	The
size	of	the	box	is	proportional	to	the	study’s	sample	size	relative	to	the	other	studies	in	the	meta-analysis.
The	length	of	the	whiskers	depicts	the	correlation’s	confidence	interval.	Note	as	well	that	the	figure
includes	the	weighted	average	correlations	and	confidence	intervals	for	the	Group	A	and	B	studies	and
for	the	overall	set	of	studies	(using	a	fixed-effect	model;	a	random-effect	model	could	also	have	been
requested).	These	averages	are	depicted	on	the	Forrest	Plot	as	diamonds	rather	than	as	boxes	and
whiskers.4	This	type	of	figure	is	growing	in	popularity	for	the	presentation	of	meta-analytic	results.





SOURCE:	Cooper,	H.,	Robinson,	J.	C.,	&	Patall,	E.	A.	(2006).	Does	homework	improve	academic	achievement?	A	synthesis	of
research,	1987–2003.	Review	of	Educational	Research,	76,	1–62.	Copyright	2006	by	the	American	Educational	Research
Association.	Adapted	with	permission.



SOURCE:	Atkinson,	Sanchez,	Koenka,	Moshontz,	and	Cooper	(2015).	Reproduced	with	permission.

Another	good	way	to	graphically	present	the	effect	sizes	that	contribute	to	a	meta-analytic	database	is	in
the	form	of	a	stem-and-leaf	display.	In	a	simple	stem-and-leaf	display	the	first	decimal	place	of	each	effect
size	acts	as	the	stem,	which	is	placed	on	the	left	side	of	a	vertical	line.	The	second	decimal	place	acts	as
the	leaf,	placed	on	the	right	side	of	the	vertical	line.	Leaves	of	effect	sizes	sharing	the	same	stems	are
placed	on	the	same	line.

Figure	8.2	Forrest	Plot	of	Hypothetical	Meta-Analysis	Conducted	in	Chapter	6

NOTE:	This	figure	was	generated	using	Comprehensive	Meta-Analysis,	Version	2.1	(Borenstein	et	al.,
2005).



Figure	8.3	Distribution	of	Correlations	Between	Time	on	Homework	and	Achievement	as	a	Function	of
Grade	Level

SOURCE:	Cooper,	Robinson,	and	Patall	(2006,	p.	43).	Copyright	2006	by	the	American	Educational
Research	Association.	Reprinted	with	permission.

NOTE:	Lower	grades	represent	grades	1	through	6.	Upper	grades	represent	grades	7	through	12	or
samples	that	were	described	as	middle	or	high	school.

Our	example	meta-analyses	on	homework	used	a	stem-and-leaf	display,	so	I	have	reproduced	it	here	in
Figure	8.3.	This	is	a	somewhat	more	complex	stem-and-leaf	display.	Here,	we	used	this	graphic	to	present
the	results	of	33	studies	that	correlated	the	amount	of	homework	students	reported	doing	each	night	with
a	measure	of	their	achievement.	The	stems	are	the	first	digit	of	the	correlations	and	are	presented	in	the
middle	column	of	the	figure.	The	leaves	are	the	second	digit	of	each	correlation.	In	the	left	side	of	the
center	column	we	have	represented	each	of	the	10	correlations	we	found	that	were	calculated	based	on
responses	from	children	in	elementary	school,	grades	1	through	6.	On	the	right	side	of	the	center	column,
we	represented	the	23	correlations	based	on	secondary	school	samples.	So,	with	no	loss	in	the	precision
of	the	information	presented,	this	figure	allows	the	reader	to	see	the	shape	and	dispersion	of	the	33
correlations	and	to	note	that	the	correlations	are	most	often	positive.	But	they	can	also	visually	detect	a
relationship	between	the	magnitude	of	correlations	and	the	grade	level	of	students.

In	general,	then,	the	subsection	that	describes	the	aggregate	results	of	the	meta-analysis	should	give	the
reader	a	broad	quantitative	overview	of	the	literature.	This	should	complement	the	qualitative	overviews
contained	in	the	introduction	and	method	sections.	It	should	provide	the	reader	with	a	sense	of	the	kinds
of	people,	procedures,	and	circumstances	contained	in	the	studies.	This	subsection	of	results	gives
readers	an	opportunity	to	assess	for	themselves	the	representativeness	of	the	sampled	people	and
circumstances	relative	to	the	target	populations.	Also,	it	provides	the	broad	overview	of	the	findings
regarding	the	main	hypothesis	under	investigation.

Analyses	of	moderators	of	study	results.
Another	subsection	should	describe	the	results	of	analyses	meant	to	uncover	study	characteristics	that
might	have	influenced	their	outcomes.	For	each	moderator	tested,	the	report	should	present	results	on
whether	the	study	characteristic	was	statistically	significantly	associated	with	variance	in	effect	sizes.	If
the	moderator	proved	significant,	the	report	should	present	an	average	effect	size	and	confidence	interval
for	each	grouping	of	studies.	For	example,	we	used	a	table	to	report	the	results	from	our	search	for
moderators	of	the	effects	of	choice	on	intrinsic	motivation.	This	table	is	partially	reproduced	here	as	Table
8.7.	Note	that	the	number	of	findings	differed	slightly	for	each	moderator	variable	we	tested	due	to	our
use	of	a	shifting	unit	of	analysis.

Finally,	the	section	describing	moderator	and	mediator	analyses	should	give	readers	some	idea	of	the
interrelationships	among	the	different	predictors	of	effect	sizes.	So,	for	example,	in	the	report	of	our
meta-analysis	on	the	effects	of	choice	on	intrinsic	motivation,	we	included	a	table	that	presented	a	matrix
of	the	relationships	between	each	pair	of	moderator	variables.	These	interrelationships	were	used	in	the
discussion	of	results	to	caution	readers	about	possible	confounds	among	our	results.

In	sum,	the	results	section	should	contain	your	overall	quantitative	description	of	the	covered	literature,	a



description	of	the	overall	findings	regarding	the	hypotheses	or	relationships	of	primary	interest,	and	the
outcomes	of	the	search	for	moderators	and	mediators	of	relationships.	This	lays	the	groundwork	for	the
substantive	discussion	that	follows.

SOURCE:	Adapted	from	“The	effects	of	choice	on	intrinsic	motivation	and	related	outcomes:	A	meta-analysis	of	research
findings,”	by	E.	A.	Patall,	H.	Cooper,	and	J.	C.	Robinson,	2008,	Psychological	Bulletin,	134,	289.	Copyright	2008	by	the
American	Psychological	Association.
NOTE:	Random	effects	Q	values	and	point	estimates	are	presented	in	parentheses.	+p	<.10,	*p	<.05,	**p	<.01.

The	Discussion	Section
The	discussion	section	of	a	research	synthesis	serves	the	same	functions	served	by	discussions	in	primary
research.	Discussions	typically	contain	at	least	five	components.

First,	your	discussion	should	present	a	summary	of	the	major	findings	of	the	synthesis.	This	should	not	be
too	long	and	should	focus	primarily	on	the	results	you	will	spend	time	interpreting.



Second,	you	should	interpret	the	major	findings.	The	interpretation	should	describe	the	magnitude	of	the
important	effect	sizes	and	their	substantive	meaning.	This	will	involve	examining	the	results	in	relation	to
the	predictions	you	made	in	the	introduction.	Also,	you	need	to	examine	the	results	for	what	they	tell	us
about	the	theories	and	theoretical	debates	presented	in	the	introduction.	How	to	do	this	was	the	principal
purpose	of	Chapter	7.

Third,	your	discussion	should	consider	alternative	explanations	for	your	data.	Typically,	these	will	include,
at	a	minimum,	consideration	of	the	possible	impact	of	(a)	missing	data,	(b)	correlations	among	moderator
variables,	and	(c)	issues	arising	from	methodological	artifacts	shared	by	the	studies	going	into	the	meta-
analysis.

Fourth,	you	will	need	to	examine	the	generalizability	of	your	findings.	This	will	require	you	to	consider	(a)
whether	participants	from	all	the	relevant	subpopulations	have	been	included	in	the	studies	that	make	up
your	meta-analytic	database,	(b)	whether	important	variations	in	independent	or	predictor	variables	and
dependent	or	outcome	variables	are	represented	(or	not)	in	the	studies,	and	(c)	the	match	between	the
research	designs	used	in	the	individual	studies	and	the	inferences	you	wish	to	draw.

Finally,	you	should	include	a	discussion	of	topics	that	need	to	be	examined	in	future	research.	These
should	include	new	questions	raised	by	the	outcomes	of	the	synthesis,	and	old	questions	left	unresolved
because	of	ambiguous	synthesis	results	or	a	lack	of	prior	primary	research.

In	general,	then,	the	discussion	section	of	a	research	synthesis	report	is	used	to	make	substantive
interpretation	of	findings,	to	assess	the	generalizability	of	findings,	to	appraise	whether	past
controversies	have	been	resolved,	and	to	suggest	fruitful	directions	for	future	research.

I	have	rarely,	if	ever,	seen	a	report	of	a	research	synthesis	that	included	everything	I	have	mentioned	and
everything	listed	in	the	MARS.	Sometimes	this	is	understandable;	the	relevance	of	the	information	is
minimal	given	the	nature	of	the	literature	being	described.	Other	times,	the	omission	is	more	concerning.
It	leaves	the	reader	wondering	how	to	interpret	the	results	and,	ultimately,	whether	the	results	are	to	be
trusted.	So,	it	is	important	to	ask,	when	you	consider	the	report	of	the	results	of	a	research	synthesis,

Were	the	procedures	and	results	of	the	research	synthesis	documented	clearly	and	completely?

Exercises
Find	a	report	of	a	meta-analysis	that	interests	you.	As	you	read	it,	check	off	the	items	in	the	MARS	that	are	included	in	the
report.	What	items	are	missing?	Are	they	important	to	how	you	might	interpret	the	findings?	If	so,	how	might	their	omission
change	your	confidence	in	the	conclusions	of	the	synthesis?

Notes
1.	In	the	interest	of	full	disclosure,	I	should	mention	that	I	served	as	chair	of	this	committee.

2.	In	the	meta-analysis	of	individual	differences	in	rape	attitudes,	a	chart	was	presented	that	illustrated
the	number	of	studies	of	rape	attitudes	reported	in	each	of	consecutive	years	because	we	wanted	to	show
how	interest	in	the	topic	was	growing.

3.	Had	this	been	an	actual	meta-analysis,	I	would	have	substituted	the	first	author’s	last	name	and	the
year	of	the	report	for	the	study	number.

4.	The	calculations	in	Figure	8.1	are	based	on	r-indexes	transformed	to	z-scores	then	transformed	back	to
rs.	So,	the	results	differ	very	slightly	from	those	in	Table	6.4.



9	Conclusion	Threats	to	the	Validity	of	Research	Synthesis
Conclusions

This	chapter	describes
For	each	stage	of	a	research	synthesis

The	general	validity	issues	associated	with	the	methodological	choices	made	during	that	stage
The	specific	threats	to	validity
What	synthesists	can	do	to	lessen	the	chances	that	the	threats	will	be	plausible	alternative	explanations	to	their
conclusions
The	cost	and	feasibility	of	conducting	research	syntheses
The	value	of	disconfirmation	in	science
Creativity	in	the	research	synthesis	process

In	order	to	help	you	keep	in	mind	the	implications	of	decisions	you	make	as	you	carry	out	your	research
synthesis,	in	this	chapter	I	present	some	of	the	major	threats	to	validity	you	will	encounter	at	each	stage
of	your	project.	I	also	summarize	some	of	the	practices	you	can	implement	to	lessen	the	plausibility	of
these	threats.	Also,	there	are	several	issues	related	to	research	synthesis	that	involve	more-general	and
more-philosophical	considerations	in	applying	the	guidelines	set	forth	in	the	previous	chapters.	I	end	the
chapter,	and	the	text,	by	briefly	addressing	these	issues.

Validity	Issues
Recall	that	Campbell	and	Stanley’s	(1963)	list	of	validity	threats	to	primary	research	was	expanded	and
rearranged	by	Bracht	and	Glass	(1968),	Campbell	(1969),	Cook	and	Campbell	(1979),	and,	most	recently,
by	Shadish	et	al.	(2002).	This	same	expansion	and	rearranging	of	threats	to	validity	has	also	occurred	for
research	synthesis.	In	1984	the	first	edition	of	this	book	(Cooper,	1984)	suggested	11	threats	to	validity.
Matt	and	Cook	(1994)	expanded	this	list	to	21	threats;	Shadish	et	al.	expanded	the	list	to	29	threats;	and
then	Matt	and	Cook	(2009)	pared	the	list	back	to	28	threats.	Not	only	does	the	list	of	threats	expand	and
contract,	but	list	providers	also	differ	somewhat	in	their	construal	of	the	general	class	of	validity
(construct,	internal,	external,	or	statistical)	that	each	specific	threat	might	be	related	to.	This	is	not	a	bad
thing,	but	a	good	one.	It	serves	to	emphasize	that	what	we	are	working	with	here	is	a	dynamic	theory	of
evidence.	As	such,	it	is	okay	for	theorists	to	disagree.	It	is	a	sign	of	vitality	and	suggests	the	future	will
hold	even	more	progress	and	refinement	in	thinking.

In	Tables	9.1	through	9.7	I	provide	a	summary	of	the	validity	issues	associated	with	each	step	in	research
synthesis.	At	the	top	of	each	table	are	general	statements	about	the	threats	to	validity	associated	with
that	step.	Next,	I	provide	a	list	of	more	specific	threats	to	validity	taken	from	Matt	and	Cook	(2009;	also
found	in	Shadish	et	al.,	2002)	that	I	have	tried	to	align	with	the	seven	steps.	Just	as	these	previous	list
makers	disagreed	somewhat	about	the	placement	of	these	threats	into	different	broader	classes,	I	am
certain	that	others	will	disagree	with	my	classification	(I	moved	several	into	different	steps	myself	before
settling	on	final	resting	places).	Also,	I	have	listed	only	24	of	the	threats	offered	by	previous	list	makers.	I
found	that	some	of	the	threats	appeared	to	be	at	least	partially	redundant	in	the	concerns	they	covered.

Several	of	the	threats	to	validity	cataloged	by	Matt	and	Cook	(1994,	2009)	and	by	Shadish	et	al.	(2002)
that	arise	in	the	course	of	research	synthesis	are	simply	holdovers	that	represent	pervasive	problems	in
primary	research.	For	instance,	two	threats	to	the	validity	of	a	synthesis’	conclusions	when	data	are	being
collected	are	that	(a)	the	data	from	studies	might	not	support	conclusions	about	causal	relations	and	(b)
the	people	sampled	in	the	covered	studies	might	not	be	representative	of	the	target	population.	This
suggests	that	any	threat	associated	with	a	particular	primary	research	design	is	applicable	to	a	synthesis’
conclusions	if	the	design	characteristic	appears	in	a	substantial	portion	of	the	covered	research.	So,
research	designs	should	be	examined	carefully	as	potential	moderators	of	study	results.	The	creation	of
these	nomological	nets	(Cronbach	&	Meehl,	1955)	can	be	one	of	your	synthesis’	most	valuable
contributions.	However,	if	an	assortment	of	research	designs	(and	participants,	settings,	and	outcomes)	is
not	contained	in	a	synthesis,	then	threats	associated	with	weaknesses	in	the	dominant	design	features
also	threaten	the	synthesis’	conclusions.

The	last	entries	in	Tables	9.1	through	9.7	summarize	many	of	the	good	practices	I	mentioned	in	the
previous	chapters.	Here,	they	are	phrased	in	a	way	that	shows	how	the	practice	will	help	protect	your
synthesis	from	the	threats	listed	above	them.	You	can	use	these	tables	along	with	Table	1.3,	which	lists
the	questions	to	ask	about	how	a	research	synthesis	was	conducted,	as	summary	guides	to	help	you	as
you	plan	and	execute	your	project.



SOURCE:	Validity	threats	in	italics	are	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).



SOURCE:	Validity	threats	in	italics	are	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).

SOURCE:	Validity	threat	in	italics	is	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).



SOURCE:	Validity	threats	in	italics	are	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).



SOURCE:	Validity	threats	in	italics	are	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).





SOURCE:	Validity	threats	in	italics	are	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).

SOURCE:	Validity	threats	in	italics	are	taken	from	Shadish	et	al.	(2002),	and	Matt	and	Cook	(2009).

Criticism	of	Research	Synthesis	and	Meta-Analysis
Another	way	to	summarize	the	issues	I	have	covered	in	this	text	is	to	look	at	the	criticisms	that	have	been
leveled	against	research	synthesis	and	meta-analysis	and	see	how	we	might	respond	to	them.	Four	recent
texts	have	compiled	lists	of	such	criticisms	(Borenstein	et	al.,	2009;	Card,	2012;	Littell,	Corcoran,	&	Pillai,
2008;	Petticrew	&	Roberts,	2006)	and	answered	them.	In	Table	9.8,	I	have	integrated	these	lists,
categorized	them	by	the	stage	of	the	synthesis	process	they	pertain	to,	and	provided	my	own	responses
(similar	to	those	you	will	find	in	the	above	references).

There	are	two	general	and	important	questions	to	ask	when	a	criticism	is	leveled	against	research
synthesis	and	meta-analysis.	First,	“Could	this	criticism	be	leveled	against	research	synthesis	regardless
of	whether	the	new	standards	of	evidence	were	being	employed	or	a	more	traditional	form	of	research
review	was	conducted?”	You	will	find	that	in	many	instances	the	criticism	really	pertains	to	research
reviews	in	general,	warranted	or	not.	Perhaps	the	major	difference	is	that	when	scientific	standards	are
applied	to	the	conduct	of	a	research	synthesis	the	weaknesses	in	evidence	become	more	transparent;
simply	because	weaknesses	are	less	evident	in	traditional	reviews	does	not	mean	they	are	not	there.

The	second	question	to	ask	is,	“Does	this	criticism	relate	to	the	methods	themselves	or	to	the	way	a
particular	research	synthesis	was	conducted?”	You	will	find	that	in	many	instances	critics	point	to
weaknesses	in	syntheses	they	have	seen	published	but	were	flawed	in	their	execution.	This	is	bound	to
happen,	and	is	almost	inevitable.	It	does	not	mean	the	methods	are	flawed;	the	methods	provide	the
yardstick	for	assessing	the	trustworthiness	of	the	synthesis.	It	is	the	execution	that	leaves	something	to
be	desired.	A	similar	assessment	could	be	made	of	every	primary	study	that	has	ever	been	conducted.
There	is	always	room	for	improvement.

Feasibility	and	Cost
It	is	considerably	more	expensive,	in	terms	of	both	time	and	money,	for	synthesists	to	undertake	a	project
using	the	guidelines	set	forth	in	this	book	than	to	conduct	syntheses	in	a	less	rigorous	manner.	More
people	are	involved	who	need	to	be	compensated	for	their	time.	More	time	and	resources	are	needed	to
search	the	literature,	develop	coding	frames,	run	analyses,	and	prepare	reports.



Given	these	costs,	should	a	potential	synthesist	with	limited	resources	be	discouraged	from	undertaking
such	a	project?	Certainly	not;	just	as	the	perfect,	irrefutable	primary	study	has	never	been	conducted,	so,
too,	the	perfect	synthesis	remains	an	ideal.	My	guidelines	represent	more	a	yardstick	for	evaluating
syntheses	than	a	set	of	absolute	requirements.	In	fact,	you	should	be	aware	of	several	instances	in	which
the	syntheses	I	used	as	examples	fell	short	of	complete	adherence	to	the	guidelines.	You	should	not	hold
the	guidelines	as	absolute	criteria	that	must	be	met	but	rather	as	targets	that	help	you	refine	procedures
until	you	strike	a	good	balance	between	rigor	and	feasibility.	It	is	critical,	though,	that	you	acknowledge
in	your	report	where	the	weaknesses	in	your	synthesis	exist.







The	Scientific	Method	and	Disconfirmation
While	the	practical	aspects	of	conducting	research	syntheses	may	mean	the	investigator	must	settle	for	a
less-than-perfect	product,	the	ideals	of	science	still	must	be	strictly	applied	to	the	research	synthesis
process.	The	most	crucial	scientific	element	missing	from	haphazard	synthesis	procedures	is	the	potential
for	the	disconfirmation	of	the	synthesist’s	prior	beliefs.	In	most	instances,	primary	researchers	undertake
their	work	with	some	recognition	that	the	results	of	their	study	may	alter	their	beliefs.	By	extending	the
scientific	method	to	research	syntheses,	we	also	expand	the	potential	for	disconfirmation.	Ross	and
Lepper	(1980)	have	stated	this	position	nicely:

We	know	all	too	well	that	the	scientific	method	is	not	immune	to	the	diseases	of	biased	assimilation,
causal	explanation,	and	a	host	of	other	nagging	afflictions;	scientists	can	be	blind,	sometimes
deliberately	so,	to	unanticipated	or	uncongenial	interpretations	of	their	data	and	recalcitrant	in	their
theoretical	allegiances.	.	.	.	Nevertheless,	it	is	the	scientific	method	.	.	.	that	has	often	been
responsible	for	increasing	human	understanding	of	the	natural	and	social	world.	Despite	its	flaws,	it
remains	the	best	means	of	delivering	us	from	the	errors	of	intuitive	beliefs	and	intuitive	methods	for
testing	those	beliefs.	(p.	33)

Creativity	in	Research	Synthesis
Early	in	this	text	I	mentioned	that	one	objection	to	the	use	of	scientific	guidelines	for	research	synthesis
is	that	this	system	stifles	creativity.	Critics	who	raise	this	issue	think	the	rules	for	conducting	and
reporting	primary	research	are	a	straitjacket	on	innovative	thinking.	I	cannot	disagree	more.	Rigorous
criteria	will	not	produce	syntheses	that	are	mechanical	and	uncreative.	Your	expertise	and	intuition	will
be	challenged	to	capitalize	on	or	create	opportunities	to	obtain,	evaluate,	and	analyze	information	unique
to	your	problem	area.	I	hope	the	syntheses	examples	have	demonstrated	the	diversity	and	complexity	of
issues	that	confront	those	who	adopt	the	scientific	method.	These	challenges	are	created,	not	solved,	by



the	rules	of	science.

Conclusion
I	began	this	book	with	the	supposition	that	research	synthesis	was	a	data-gathering	exercise	that	needed
to	be	evaluated	against	scientific	criteria.	Because	of	the	growth	in	empirical	research	and	the	increased
access	to	information,	the	conclusions	of	research	syntheses	will	become	less	trustworthy	unless	we
systematize	the	process	and	make	it	more	rigorous	and	unbiased.	I	hope	that	the	concepts	and	techniques
presented	here	have	convinced	you	that	it	is	feasible	and	desirable	for	social	scientists	to	require	rigorous
syntheses.	Such	rules	bring	with	them	greater	potential	for	creating	consensus	among	scholars	and	for
focusing	discussion	on	specific	and	testable	areas	of	disagreement	when	conflict	does	exist.	Because	of
the	increasing	role	that	research	syntheses	play	in	our	definition	of	knowledge,	these	adjustments	in
procedures	are	inevitable	if	social	scientists	hope	to	retain	their	claim	to	objectivity	as	well	as	their
credibility	with	those	who	turn	to	scientists	to	help	solve	social	problems	and	increase	our	understanding
of	the	world.
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National	Association	of	Test	Directors,	75,	76
Natural	language,	109(n2)
Nomological	nets,	320
Null	findings,	84–85,	139–140



Odds	ratio,	219–220
Online	journals,	81–83
Open	access,	68
Open	access	journals,	82,	83
Open	entry,	67
Operational	definitions,	34,	35,	41
Operational	detail,	differences	in,	41
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meta-analysis,	192–198,	195	(figure)
meta-analysis,	advanced	techniques	in,	254–257
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Step	5.	See	Outcomes	of	studies,	analyzing	and	integrating
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Step	7.	See	Results,	presenting
Structural	equation	modeling,	260(n6)
Studies:

as	units	of	analysis,	144–145
variability	from	sampling,	202
See	also	specific	topics
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